3,003 research outputs found

    Glycated hemoglobin vs fasting plasma glucose as a predictor of left ventricular dysfunction after st-elevation myocardial infarction

    Get PDF
    The World Health Organization and the American Diabetes Association recommend a level of glycated hemoglobin (HbA1c) ≥ 6.5% as diagnostic for diabetes. However, concordance between fasting plasma glucose (FPG) and HbA1c levels in acutely unwell patients is unknown. Furthermore, the prognostic value of HbA1c for left ventricular (LV) dysfunction is unclear. This study aimed to evaluate the concordance between HbA1c levels and FPG in consecutive patients with acute ST-elevation MI (STEMI) and compare their prognostic value in predicting LV dysfunction and elevated filling pressures on echocardiography.A total of 142 patients with a first incidence of STEMI were prospectively recruited. LV diastolic function was defined as mean septal and lateral early diastolic velocities (average e'); filling pressure was the ratio of transmitral E velocity to average e' (average E/e').Mean FPG and HbA1c levels were 7.7 ± 2.8 mmol/L and 6.5% ± 1.6%, respectively. Of 109 patients without previous diabetes, HbA1c levels identified an additional 18 patients (16.5%) as having diabetes, and the concordance with FPG was poor. Between diabetic and nondiabetic patients, there were no differences in LV end-diastolic volume (116 ± 37 vs 118 ± 43 mL; P = 0.78), end-systolic volume (69 ± 33 vs 68 ± 35 mL; P = 0.93), and ejection fraction (42 ± 12 vs 44 ± 11%; P = 0.49). On multivariable analyses, average e' was independently associated with HbA1c (β = -0.161; P = 0.045) but not FPG (P = 0.82). Similarly, average E/e' was independently associated with HbA1c (β = 0.168; P = 0.04) but not FPG (P = 0.32). Receiver operating characteristic curve analysis showed that an HbA1c cutoff of 6.4% (area under the curve, 0.68; P = 0.002) was associated with an elevated LV filling pressure.Only HbA1c was independently associated with impaired LV diastolic function and increased filling pressures after STEMI

    Bounds and Decays of New Heavy Vector-like Top Partners

    Get PDF
    We study the phenomenology of new heavy vector-like fermions that couple to the third generation quarks via Yukawa interactions, covering all the allowed representations under the standard model gauge groups. We first review tree and loop level bounds on these states. We then discuss tree level decays and loop-induced decays to photon or gluon plus top. The main decays at tree level are to W b and/or Z and Higgs plus top via the new Yukawa couplings. The radiative loop decays turn out to be quite close to the naive estimate: in all cases, in the allowed perturbative parameter space, the branching ratios are mildly sensitive on the new Yukawa couplings and small. We therefore conclude that the new states can be observed at the LHC and that the tree level decays can allow to distinguish the different representations. Moreover, the observation of the radiative decays at the LHC would suggest a large Yukawa coupling in the non-perturbative regime.Comment: 32 pages, 2 tables, 10 figure

    Epicardial adipose tissue volume and left ventricular myocardial function using 3-dimensional speckle tracking echocardiography

    Get PDF
    Background: Although epicardial adipose tissue (EAT) volume is associated with increased incidence of coronary artery disease (CAD), its role in myocardial systolic dysfunction is unclear. The present study aimed to identify independent determinants of EAT volume in patients without obstructive CAD, and to evaluate the association between EAT volume (vs other measures of obesity) and myocardial systolic strain analysis

    The transition between stochastic and deterministic behavior in an excitable gene circuit

    Get PDF
    We explore the connection between a stochastic simulation model and an ordinary differential equations (ODEs) model of the dynamics of an excitable gene circuit that exhibits noise-induced oscillations. Near a bifurcation point in the ODE model, the stochastic simulation model yields behavior dramatically different from that predicted by the ODE model. We analyze how that behavior depends on the gene copy number and find very slow convergence to the large number limit near the bifurcation point. The implications for understanding the dynamics of gene circuits and other birth-death dynamical systems with small numbers of constituents are discussed.Comment: PLoS ONE: Research Article, published 11 Apr 201

    Evolutionary History of the Odd-Nosed Monkeys and the Phylogenetic Position of the Newly Described Myanmar Snub-Nosed Monkey Rhinopithecus strykeri

    Get PDF
    Odd-nosed monkeys represent one of the two major groups of Asian colobines. Our knowledge about this primate group is still limited as it is highlighted by the recent discovery of a new species in Northern Myanmar. Although a common origin of the group is now widely accepted, the phylogenetic relationships among its genera and species, and the biogeographic processes leading to their current distribution are largely unknown. To address these issues, we have analyzed complete mitochondrial genomes and 12 nuclear loci, including one X chromosomal, six Y chromosomal and five autosomal loci, from all ten odd-nosed monkey species. The gene tree topologies and divergence age estimates derived from different markers were highly similar, but differed in placing various species or haplogroups within the genera Rhinopithecus and Pygathrix. Based on our data, Rhinopithecus represent the most basal lineage, and Nasalis and Simias form closely related sister taxa, suggesting a Northern origin of odd-nosed monkeys and a later invasion into Indochina and Sundaland. According to our divergence age estimates, the lineages leading to the genera Rhinopithecus, Pygathrix and Nasalis+Simias originated in the late Miocene, while differentiation events within these genera and also the split between Nasalis and Simias occurred in the Pleistocene. Observed gene tree discordances between mitochondrial and nuclear datasets, and paraphylies in the mitochondrial dataset for some species of the genera Rhinopithecus and Pygathrix suggest secondary gene flow after the taxa initially diverged. Most likely such events were triggered by dramatic changes in geology and climate within the region. Overall, our study provides the most comprehensive view on odd-nosed monkey evolution and emphasizes that data from differentially inherited markers are crucial to better understand evolutionary relationships and to trace secondary gene flow

    CP Violation and Baryogenesis due to Heavy Majorana Neutrinos

    Get PDF
    We analyze the scenario of baryogenesis through leptogenesis induced by the out-of-equilibrium decays of heavy Majorana neutrinos and pay special attention to CP violation. Extending a recently proposed resummation formalism for two-fermion mixing to decay amplitudes, we calculate the resonant phenomenon of CP violation due to the mixing of two nearly degenerate heavy Majorana neutrinos. Solving numerically the relevant Boltzmann equations, we find that the isosinglet Majorana mass may range from 1 TeV up to the grand unification scale, depending on the mechanism of CP violation and/or the flavour structure of the neutrino mass matrix assumed. Finite temperature effects and possible constraints from the electric dipole moment of electron and other low-energy experiments are briefly discussed.Comment: 46 pages, LaTeX, 4 encapsulated figures include

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore