206 research outputs found

    Salt release from potato crisps

    Get PDF
    The rate of salt release in-mouth from salted potato crisps was evaluated. It was hypothesised that a slow steady release of sodium would occur on chewing and hydration; to test this a crisp was chewed and held in the oral cavity without swallowing for 60 s. Sodium release was measured over the entire holding period, after 20–30 s a peak in salivary sodium levels was recorded. A similar trend was observed with sensory perceived saltiness by trained panellists. The results suggest that a significant proportion of the crisp’s salt flavouring is released in a pulse-type mechanism which would not be encountered when the crisp is exposed to normal eating patterns and would result in the consumption of a large proportion of unperceived sodium

    Effect of Pulsed or Continuous Delivery of Salt on Sensory Perception Over Short Time Intervals

    Get PDF
    Salt in the human diet is a major risk factor for hypertension and many countries have set targets to reduce salt consumption. Technological solutions are being sought to lower the salt content of processed foods without altering their taste. In this study, the approach was to deliver salt solutions in pulses of different concentrations to determine whether a pulsed delivery profile affected sensory perception of salt. Nine different salt profiles were delivered by a Dynataste device and a trained panel assessed their saltiness using time–intensity and single-score sensory techniques. The profile duration (15 s) was designed to match eating conditions and the effects of intensity and duration of the pulses on sensory perception were investigated. Sensory results from the profiles delivered in either water or in a bouillon base were not statistically different. Maximum perceived salt intensities and the area under the time– intensity curves correlated well with the overall perceived saltiness intensity despite the stimulus being delivered as several pulses. The overall saltiness scores for profiles delivering the same overall amount of sodium were statistically not different from one another suggesting that, in this system, pulsed delivery did not enhance salt perception but the overall amount of salt delivered in each profile did affect sensory perception

    Individually Modified Saliva Delivery Changes the Perceived Intensity of Saltiness and Sourness

    Get PDF
    Individuals vary largely in their salivary flow and composition, and given the importance of saliva on perception of taste, this might influence how the tastant stimuli are perceived. We therefore hypothesise that altering the individual salivary flow rates has an impact on the perceived taste intensity. In this study, we investigated the role of saliva amount on the perceived taste intensity by excluding parotid saliva and adding artificial saliva close to the parotid duct at preset flow rates. Significant decreases in perception with increasing salivary flow rates were observed for citric acid and sodium chloride. This can partially be explained by a dilution effect which is in line with previous studies on detectable concentration differences. However, since the bitterness and sweetness remained unaffected by the salivary flow conditions and the dilution effect was comparable to that of saltiness, further explanation is needed. Furthermore, we investigated whether the suppression of taste intensity in binary mixtures (taste–taste interactions) could possibly be caused by the increased salivary flow rate induced by an additional taste attribute. The results show, however, that suppression of taste intensity in binary mixtures was not affected by the rate of salivation. This was more likely to be explained by psychophysics

    Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information

    Get PDF
    [EN] Background In vitro digestion models show great promise in facilitating the rationale design of foods. This paper provides a look into the current state of the art and outlines possible future paths for developments of digestion models recreating the diverse physiological conditions of specific groups of the human population. Scope and approach Based on a collective effort of experts, this paper outlines considerations and parameters needed for development of new in vitro digestion models, e.g. gastric pH, enzymatic activities, gastric emptying rate and more. These and other parameters are detrimental to the adequate development of in vitro models that enable deeper insight into matters of food luminal breakdown as well as nutrient and nutraceutical bioaccessibility. Subsequently, we present an overview of some new and emerging in vitro digestion models mirroring the gastro-intestinal conditions of infants, the elderly and patients of cystic fibrosis or gastric bypass surgery. Key findings and conclusions This paper calls for synchronization, harmonization and validation of potential developments in in vitro digestion models that would greatly facilitate manufacturing of foods tailored or even personalized, to a certain extent, to various strata of the human population.Shani-Levi, C.; Alvito, P.; Andrés Grau, AM.; Assunção, R.; Barbera, R.; Blanquet-Diot, S.; Bourlieu, C.... (2017). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science & Technology. 60:52-63. https://doi.org/10.1016/j.tifs.2016.10.017S52636

    Understanding the relevance of in-mouth food processing. A review of in vitro techniques

    Full text link
    [EN] Oral processing of food is the first step in the eating process. Although the food undergoes a number of changes during mastication that influence the subsequent steps, this stage has very often been neglected in studies of digestion, bioavailability, flavor release, satiety potential, glycemic index determination, etc. The present review draws on different sources such as nutrition, medicine, phoniatry and dentistry to explain some in vitro oral processing methods and techniques that could be transferred to food technology studies to mimic in vivo comminution, insalivation, and bolus formation, describing, as a necessary reference, the respective in vivo physiological processes they attempt to imitate. Developing a deeper understanding of all the aspects of in-mouth process will help food technologists to give this crucial step the necessary attention its due importance and to consider better ways to incorporate it into their studies.The authors wish to acknowledge the financial support of the Spanish Government (project AGL2012-36753-C02) and gratefully acknowledge the financial support of EU FEDER funds. Mary Georgina Hardinge assisted with the translation and corrected the English text.Morell Esteve, P.; Hernando Hernando, MI.; Fiszman, SM. (2014). Understanding the relevance of in-mouth food processing. A review of in vitro techniques. Trends in Food Science and Technology. 35(1):18-31. https://doi.org/10.1016/j.tifs.2013.10.005S183135
    • …
    corecore