15 research outputs found

    Toward a loss of functional diversity in stream fish assemblages under climate change

    Get PDF
    The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes. In this study, two functional indices (originality and uniqueness) were first measured for 35 fish species occurring in French streams. They were then combined to projections of range shifts in response to climate change derived from species distribution models. We set out to investigate: (1) the relationship between the degrees of originality and uniqueness of fish species, and their projected response to future climate change; and (2) the consequences of individual responses of species for the functional diversity of fish assemblages. After accounting for phylogenetic relatedness among species, we have demonstrated that the two indices used measure two complementary facets of the position of fish species in a functional space. We have also rejected the hypothesis that the most original and/or less redundant species would necessarily experience the greatest declines in habitat suitability as a result of climate change. However, individual species range shifts could lead simultaneously both to a severe decline in the functional diversity of fish assemblages, and to an increase in the functional similarity among assemblages, supporting the hypothesis that disturbance favors communities with combination of common traits and biotic homogenization as well. Our findings therefore emphasize the importance of going beyond the simple taxonomic description of diversity to provide a better assessment of the likely future effects of environmental changes on biodiversity, thus helping to design more effective conservation and management measures

    Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory

    Get PDF
    EFSA was asked to update the 2015 EFSA risk assessment on Xylella fastidiosa for the territory of the EU. In particular, EFSA was asked to focus on potential establishment, short‐ and long‐range spread, the length of the asymptomatic period, the impact of X. fastidiosa and an update on risk reduction options. EFSA was asked to take into account the different subspecies and Sequence Types of X. fastidiosa. This was attempted throughout the scientific opinion but several issues with data availability meant that this could only be partially achieved. Models for risk of establishment showed most of the EU territory may be potentially suitable for X. fastidiosa although southern EU is most at risk. Differences in estimated areas of potential establishment were evident among X. fastidiosa subspecies, particularly X. fastidiosa subsp. multiplex which demonstrated areas of potential establishment further north in the EU. The model of establishment could be used to develop targeted surveys by Member States. The asymptomatic period of X. fastidiosa varied significantly for different host and pathogen subspecies combinations, for example from a median of approximately 1 month in ornamental plants and up to 10 months in olive, for pauca. This variable and long asymptomatic period is a considerable limitation to successful detection and control, particularly where surveillance is based on visual inspection. Modelling suggested that local eradication (e.g. within orchards) is possible, providing sampling intensity is sufficient for early detection and effective control measures are implemented swiftly (e.g. within 30 days). Modelling of long‐range spread (e.g. regional scale) demonstrated the important role of long‐range dispersal and the need to better understand this. Reducing buffer zone width in both containment and eradication scenarios increased the area infected. Intensive surveillance for early detection, and consequent plant removal, of new outbreaks is crucial for both successful eradication and containment at the regional scale, in addition to effective vector control. The assessment of impacts indicated that almond and Citrus spp. were at lower impact on yield compared to olive. Although the lowest impact was estimated for grapevine, and the highest for olive, this was based on several assumptions including that the assessment considered only Philaenus spumarius as a vector. If other xylem‐feeding insects act as vectors the impact could be different. Since the Scientific Opinion published in 2015, there are still no risk reduction options that can remove the bacterium from the plant in open field conditions. Short‐ and long‐range spread modelling showed that an early detection and rapid application of phytosanitary measures, consisting among others of plant removal and vector control, are essential to prevent further spread of the pathogen to new areas. Further data collection will allow a reduction in uncertainty and facilitate more tailored and effective control given the intraspecific diversity of X. fastidiosa and wide host range

    The contradiction between public space and safety: challenges and positives stories in post-apartheid Johannesburg : - a field study of the urban landscape in Johannesburg and the open urban village of Parkhurst

    No full text
    The purpose with this thesis is to explore the urban landscape in post-apartheid Johannesburg, investigate the concept of the growing numbers of various types of urban villages and moreover look into the open urban village of Parkhurst. The main questions that are addressed in the thesis are: How would the urban landscape in post-apartheid Johannesburg be described and which types of urban villages can be identified? What would the residents in Parkhurst explain to be the reasons for living in an open urban village and what are their opinions on safety, public space and closed urban villages? Qualitative methods were used as in observation studies and inductive in-depth interviews during the field study in Parkhurst, Johannesburg. The study shows that the concept of urban villages can create both a negative spatial situation and a positive spatial situation – depending on the type of urban village. The thesis also shows that it is possible to feel safe living in a open urban village in a city with high crime and that thoughtful design and effective management of spaces in the city are essential factors that can prevent places from becoming ‘hot spots’ for crime

    More than Moran: Coupling statistical and simulation models to understand how defoliation spread and weather variation drive insect outbreak dynamics

    No full text
    Understanding the processes that underlie species fluctuations is crucial to the development of efficient management strategies for outbreaks of destructive forest pests. Yet, the role of biotic and abiotic factors as well as their interactions in synchronizing outbreaks is not understood, despite many empirical and theoretical studies of species fluctuations. Here, we use a combined statistical-simulation model to investigate how defoliation spread and autocorrelated weather affect outbreaks of a major defoliator of North American boreal forest, the spruce budworm. We modelled the regional dynamics of spruce budworm and based the model on data collected from spatiotemporal aerial surveys of defoliation from 1968-2015 in Quebec, Canada. The effects of weather on local forest stand defoliation and dieback transitions, along with defoliation spread probability and distance, were estimated statistically. Simulations were run with these estimates to identify the effects of spatiotemporal weather autocorrelation on synchronicity of outbreaks. Defoliation spread together with all weather variables was found to best fit the observed outbreak size. Simulation models suggest that positive temporal autocorrelation in weather promotes outbreaks, indicating that a series of suitable years could encourage outbreaks. Our models indicate that spatially-explicit management strategies may be effective in controlling outbreaks.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech

    No full text
    Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process-based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north-eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1-2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36-61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life-history are likely to increase its threat status in the near future.Frédérik Saltré, Anne Duputié, Cédric Gaucherel and Isabelle Chuin
    corecore