101 research outputs found

    Recorded Music is an Incredibly Tough Business in China - But, It Should Be Incredible

    Get PDF

    BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.

    Get PDF
    Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health

    Human dopaminergic neurons lacking PINK1 exhibit disrupted dopamine metabolism related to vitamin B6 co-factors

    Get PDF
    PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential. Compensatory, mitochondrial renewal maintains mitochondrial morphology and protects the respiratory chain. This is paralleled by metabolic changes, including inhibition of the TCA cycle enzyme mAconitase, accumulation of NAD+, and metabolite depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting its synthesis and uptake. The mechanism involves steering of key amino acids toward energy production rather than neurotransmitter metabolism and involves cofactors related to the vitamin B6 salvage pathway identified using unbiased multi-omics approaches. We propose that reduction of mitochondrial membrane potential that cannot be controlled by PINK1 signaling initiates metabolic compensation that has neurometabolic consequences relevant to Parkinson disease

    Correction: The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape:A Large-Scale Genome-Wide Interaction Study (vol 11, e1005378, 2015)

    Get PDF
    The arcOGEN Consortium should be listed as an author of this article. They contributed to the genome-wide association study results presented in this work. They should be listed in the author byline at position 292 and affiliated with The Arthritis Research UK Osteoarthritis Genetics Consortium. They should also be included in the footnote designating consortia which is underneath the author affiliation list in the PDF version of the article, and in the S2 Text. Please view the correct S2 Text below, containing correct consortia members

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men &lt;= 50y, men &gt; 50y, women &lt;= 50y, women &gt; 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR&lt; 5%) age-specific effects, of which 11 had larger effects in younger (&lt; 50y) than in older adults (&gt;= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.</p

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe

    Mapping And Directing Branched-Chain Amino Acid Metabolism In Health And Insulin Resistance

    No full text
    Unbiased metabolomics studies in human serum have identified changes in branched-chain amino acid (BCAA) levels as biomarkers of diabetes, heart failure, and some forms of cancer. However, the changes in BCAA metabolism in each of these cases, and even in the normal state, have remained elusive. Using novel heavy-isotope infusions, I quantified whole-body BCAA metabolism in healthy mice, establishing a foundation for understanding BCAA metabolism. Most tissues supply 1-5% of their TCA carbons from BCAAs, but the pancreas supplies 20% of its TCA carbons from BCAAs. Novel modeling of whole-body metabolic flux indicates the greatest portion of systemic BCAA oxidation occurs in skeletal muscle, brown fat, and liver. Genetic and pharmacologic suppression of branched-chain alpha-ketoacid dehydrogenase kinase, a regulatory kinase, induces BCAA oxidation primarily in skeletal muscle of healthy mice. While insulin acutely increases BCAA oxidation in cardiac and skeletal muscle, chronically insulin-resistant mice show blunted BCAA oxidation in adipose tissues and liver, shifting BCAA oxidation toward muscle. Pharmacologic activation of BCAA oxidation in diabetic mice reduced plasma BCAAs and slightly improved insulin sensitivity but did not reverse diabetes. In contrast, genetic activation of BCAA oxidation specifically in skeletal muscle had no impact on glucose tolerance or insulin sensitivity even though plasma BCAAs were reduced. Together, this work provides a quantitative framework for understanding BCAA metabolism, suggests that activation of BCAA oxidation in some tissue other than skeletal muscle improves insulin sensitivity, and decouples the plasma BCAA concentration from insulin resistance

    Mapping and Directing Branched-Chain Amino Acid Metabolism in Health and Insulin Resistance

    No full text
    Unbiased metabolomics studies in human serum have identified changes in branched-chain amino acid (BCAA) levels as biomarkers of diabetes, heart failure, and some forms of cancer. However, the changes in BCAA metabolism in each of these cases, and even in the normal state, have remained elusive. Using novel heavy-isotope infusions, I quantified whole-body BCAA metabolism in healthy mice, establishing a foundation for understanding BCAA metabolism. Most tissues supply 1-5% of their TCA carbons from BCAAs, but the pancreas supplies 20% of its TCA carbons from BCAAs. Novel modeling of whole-body metabolic flux indicates the greatest portion of systemic BCAA oxidation occurs in skeletal muscle, brown fat, and liver. Genetic and pharmacologic suppression of branched-chain alpha-ketoacid dehydrogenase kinase, a regulatory kinase, induces BCAA oxidation primarily in skeletal muscle of healthy mice. While insulin acutely increases BCAA oxidation in cardiac and skeletal muscle, chronically insulin-resistant mice show blunted BCAA oxidation in adipose tissues and liver, shifting BCAA oxidation toward muscle. Pharmacologic activation of BCAA oxidation in diabetic mice reduced plasma BCAAs and slightly improved insulin sensitivity but did not reverse diabetes. In contrast, genetic activation of BCAA oxidation specifically in skeletal muscle had no impact on glucose tolerance or insulin sensitivity even though plasma BCAAs were reduced. Together, this work provides a quantitative framework for understanding BCAA metabolism, suggests that activation of BCAA oxidation in some tissue other than skeletal muscle improves insulin sensitivity, and decouples the plasma BCAA concentration from insulin resistance

    A proposed system to automatically control audio sound-to-noise levels

    No full text
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Not availabl
    corecore