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I. INTRODUCTION 

Quantum Chromodynamics (QCD) is by far the most 

attractive candidate for a theory of the strong interactions. 

The approximate scaling noticed at high energies in deep 

inelastic electron scattering is suggestive of a theory with 

asymptotic freedom, and non-Abelian gauge theories are the 

only theories in four-dimensions that are asymptotically 

free. Unfortunately, at this time, a deep understanding of 

the particle spectrum of the theory is lacking. This is 

largely due to the non-Abelian, and hence, non-linear nature 

of the theory. The ability of the gluon field to interact 

directly with itself necessarily complicates matters to the 

point where the usual perturbation method of calculating is 

totally inadequate to describe the strong coupling, large 

distance region in QeD. 

Much recent work has been devoted to the task of 

finding non-perturbative methods of analyzing non-linear 

theories. Some of these include lattice gauge theories, the 

large N expansion, and the semi-classical approximation. 

From the last of these, it has lately been realized that the 

structure of the vacuum· plays an important role in 

determining the features of a theory [1]. A model which 

illustrates this in a simple manner is the one-dimensional 

double-well potential, Fig. 1 [2,3]. Classically, it has 
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Figure 1. A simple double-well potential. 
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two ground states (or vacua). A particle with lowest energy 

in this potential would be located at either 

Quantum mechanically this is not so. A particle 

located in one well has a finite probability of tunneling 

into the other well. Over an infinite time, an infinite 

number of tunnelings can have occurred. Thus, the true 

ground state of the model must be a superposition of the two 

classical vacua. The localized, imaginary time solutions to 

the equations of motion of the model (called instantons) 

describe the most probable tunneling path from one classical 

vacuum to the other. The semi-classical method of 

approximation uses these instantons in a saddle point 

calculation to find the zeroeth order quantum effects in a 

theory. 

Quantum Chromodynamics contains multiple classical 

vacua, and hence also contains instantons which describe the 

tunnelings between these vacua. A classical vacuum has 
...." -4
E =B =0. However, this does not uniquely determine A~, but 

in fact only requires A~ to be a pure gauge, i.e., the vector 

potential Ap satisfies F)l1I =o,...A"-~ ... A,,...+[A.... ,AII]=O. This implies 

for SU(2) gauge theory that A =gtd,....g, with g belonging to 

SU(2). To specify that pure gauge a further label is needed, 

the topological charge. The topological charge counts the 

number of times that the angles of SU(2}, B(x,t), cover the 

group as 
-f 
x moves over all three dimensional space. Now a 
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classical vacuum has not only 
-i 
E 

~ 
=5 =0 but a unique 

topological charge. To go from one vacuum to another 

requires crossing a potential barrier, and instantons 

describe the tunneling through the barriers. Once again, the 

true, quantum mechanical vacuum must be a superposition of 

all these classical vacua, the so-called a-vacuum [4,5,6]. 

At present, it is not clear how to use the 

ins tantons in QCD to do general calculations of physical 

quantities, or to gain a deeper understanding of the theory. 

The structure of QCD is sufficiently complicated that it is 

difficult to manipulate its instantons and to carry out 

calculations utilizing them. We thus try to sharpen our 

skills upon simpler models, ones that we hope are 

sufficiently similar to QCD to retain its salient features, 

but yet are simple enough to allow for exact calculations 

that teach us the proper role of instantons in a QCD-like 

theory. 

This thesis deals with a hierarchy of models that 

resemble QCD in varying degrees. Chapter II outlines the 

basic ideas of the semi-classical method, and illustrates it 

on a simple one dimensional model. The instantons in the 

model are used to calculate the energy difference between the 

ground and first excited states of the model, and demonstrate 

the restoration of symmetry. Chapter III describes the 
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non-linear ~ model. This model is a two dimensional model 

with a U(l) gauge degree of freedom. It is remarkably like 

QCD for reasons which are not completely understood. 

Recently, the semi-classical approximation to the non-linear 

~ model has been shown to be equivalent to a Coulomb gas. 

We show that this Coulomb gas picture and the dilute gas 

picture, where the instantons are assumed not to interact 

when they are sufficiently far apart, are exactly equivalent, 

even when the instantons can no longer be considered to be 

dilute. This result could have important implications for 

further understanding of multi-instanton phenomena. Finally, 

in Chapter IV, we introduce a new class of four dimensional 

models which are generalizations of the non-linear ~ models 

that are also non-Abelian gauge theories. These help explain 

the remarkable similarities between the non-linear ~ model 

and non-Abelian gauge theories. It is hoped that these 

theories will be useful in understanding the instantons in 

QCD and in bridging the gap between the non-linear ~ model 

and QCD. 
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II. THE SEMI-CLASSICAL APPROXIMATION 

In this chapter, we will introduce the path 

integral approach to the semi-classical method as it applies 

to one dimensional systems only. The generalization to field 

theory is straightforward and we will use it in later 

chapters. 

The path integral approach is in the same spirit as 

the one dimensional WKB approximation. In WKB, the 

wave-function in Schrodinger's equation is written as a 

magnitude and a phase, l'(X)=A(x)exp[iS(x)/n], with A 

determined by S. Writing S as an expansion in powers of ~1, 

only the lowest order, So' is kept. Here, So becomes the 

classical action, and ignoring higher order terms in ~1 is 

equivalent to taking the n~O limit. However, this 

treatment is definitely more than classical physics, for it 

can be carried out in regions (E(V) where classical particles 

cannot penetrate. In these regions (the tunneling regions) 

we find that Sex) is imaginary, leading to non-oscillatory 

behavior in the wave-function [7]. 

In the path integral approach, lowest order quantum 

effects are also picked up. Here, we use path integrals to 

calculate 1=(, ' (t) 1+(0) >, the amplitude for a particle at 

f> with t=O to propagate to ~I at t=t. We use ; to denote 
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the position coordinate. Various expectation values (or 

correlation functions) can be calculated using these path 

integrals. Using the time evolution operator, l;'(t»= 

exp(-iHt/llH ;(0», we see 1=< r!>'lexp(-iHt/fl)lq, >. As a path 

integral, 

I=\Vd~(t) exp[(i/fl) ~L(;)dt]. (2.1) 

Here L is the classical Lagrangian, so that the expression in 

the exponential in (2.1) is just i/n times the classical 

action, S[; ] • 

Since we will be examining tunneling effects, that 

is, looking at regions where the particles have imaginary 

momenta, it is convenient to Wick rotate to imaginary time, 

t4-i't' . The quantity of interest is now 

I=<t>'lexp(-H'l'" /11) \+ >. For ,.. large, this picks out the 

ground state to ground state amplitude, 1= <O'exp(-H~ /11)10>. 

More practically, switching to imaginary time allows us to 

isolate some interesting quantities. For example, the 

correlation function 

I. I<0 \ +In>I
2. 

exp [ - (E~ -Eo ) 'i ]. In the 1 imi t 'l- ---teO , we see ... 
that this goes as \<0 \ , I 0>\" + ,<0 \ ", , 1 >I" exp [ - (E, - Eo ) ..,.. ] • 

In a double well potential, <014 10>=0 will indicate that 

left-right symmetry remains unbroken and that the true ground 

state retains this symmetry, even though the classical vacua 
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do not. The exponential will then pick off the energy 

splitting between the ground state and the first excited 

state. This is precisely the calculation we will demonstrate 

in this chapter. 

The imaginary time equivalent of (2.1) is 

(2.2) 

Here Le is the Euclidean Lagrangian, 

(2.3) 

for the particle moving in a potential, V(,). 

The path integral approach can now be interpreted 

as a saddle point calculation of the integral in (2.2). 

Stationary points (local maxima) of the integrand are found, 

and then the integral is approximated by a gaussian about 

that point. The stationary point is found by solving the 

classical equations of motion for Le. For a double-well 

potential, this configuration (the instanton) describes the 

tunneling from one of the classical vacua to the other. For 

a potential with only a single classical vacuum, this 

procedure is the first step of perturbation theory. For 

example, with V( f }= m:Z c;l. /2 + b r/>'/4, the path integral is 
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I=~Vdt(t) exp[-~[(d9>/dt)l. /2 + V(/> »)dt). (2.4) 

(We will be using t to denote imaginary time.) 

The minimum of the action 1 ies at '" =0. A gaussian 

approximation around this point does not include the ~v 

term. Higher orders of b can be found by expanding the 

exponential in a Taylor series in b, and then doing the 

remaining gaussian integrals. This expansion is precisely 

the Feynman perturbation series expansion. 

For a potential with multiple vacua, the situation 

is not so simple, for the minima in the action (maxima in the 

integrand) do not occur with ,=constant. Given an instanton 

configuration (which minimizes the action), we can calculate 

the amplitude for making a transition through that instanton 

and compare it to making no transition at all. This 

amplitude is 

W= 	 +1 )dt)]1rd (t) (2.5) 
+'7 )dt]17rd", (t) • 

Here, fA is the instanton configuration and 1 ' assumed to 

be small, is the deviation from that configuration. The 

integral in the denominator represents the amplitude for the 

system to remain in the classical vacuum represented by 
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.. =+9>0. Keeping only 0(",1) fluctuations in the numerator and 

denominator gives W as 

W=exp[- SL( t/>~ )dt] (2.6) 

t')M (t' ,t) 

S"I(t' )Mo (t' ,t) 


where, with S the classical action, 

M ( t ' , t) = [ ~2 S ] (2.7) 
&~ (t ') S; (t) 

f>= 4~ 

and 

(2.8) 


The necessity of finding finite action solutions is clear, 

since the first term in W would vanish with an infinite 

action. Since L is local, the operators M(t' ,t) and Mo(t' ,t) 

can be written as 

M(t',t)= b(t'-t)M (2.9) 

and 

Mo(t' ,t)= ~(t'-t)Mo (2.10) 
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where M and Mo are second order differential operators. 

We now proceed to use the semi-classical method to 

calculate the correlation function D(T,O)=<O I" (T) '" (0)10> 

for T~~ for a simple double-well potential. 

The path integral expression for this is 

<0\ f(T) ';(0)10>= (2.11) 

S;(T) ¢(O}exp[-S(~ )]7Td '" (t) 
~ exp [-S (; )] 11 d ,s (t) 

In the semi-class ical method, ; = t/J, + " as before, and 

therefore, the lowest order contribution in the numerator 

Thesewill come from replacing ;(T) ~ (0) by 

do not contr ibute in the gaussian integration over ". The 

denominator of (2.11) is calculated as in (2.6). 

Since this is a saddle point integration, to get 

the final value of the integral, we must do a gaussian 

approximation at each maximum of the integrand and then sum 

over· them all. A variety of minima of the action are 

possible. For instance, the particle can simply remain in 

one vacuum. Also possible is the one-instanton 

configuration, with the partice tunneling through the 

potential barrier once. Finally the particle can start in 
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one well, tunnel through to the other well, sit there a 

while, and then return. In other words, any number of 

tunnelings through the barrier is possible. These multiple 

tunnelings are not exact minima of the action, but approach a 

minimum as the exponential of the distance between them. 

They therefore make important contributions to the path 

integral. 

The two path integrals composing D(T,O) are thus 

the sums of the contributions of no instantons, one 

instanton, two instantons, etc., and we find 

D(T,O)= Io(T,O)+I, (T,O)+Ia.(T,O)+ .•• (2.12) 
Jo +J, +Ja,. +J3 +•.• 

where here I~(T,O) and J~ are the n-instanton contributions 

to the path integral in the numerator and denominator of 

(2.11), respectively. 

The zero instanton solution has the particle 

remaining in one well, f = 9>0 • Thus, Jo is given by the 

denominator of W in (2.5) I 

J.. = ~exp[- ~L( f. +'1 )dt]'i'T d", (t). (2.l3) 

10 (T,O) is similarly given by 
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(2.14) 

since ,J.. is constant.7'0 

Now, in general the path integrals I~ or J~ have 

undetermined normalizations. However, in an expression like 

(2.5), these undetermined normalizations divide out. We 

therefore write 

D(T,O)= (2.15) 

The previously introduced W is just the term (J,/Jo ). 

We will first calculate the contribution of one 

instanton (a single tunneling) to both the numerator, 

(II/Jo )' and denominator, (J./Jo )' in (2.15), and then go on 

to handle multiple tunnelings. 

The double-well potential is shown in Fig. 1 [8], 

v(~}=[m:a.(~-'ot e (f/I )+m"'(~+t/>.)1 9(-9)]/2, (2.16) 

where B(;) is the usual step function. We notice that the 
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two classical vacua are located at ~ =+4 and at f=- ~CI • 

The instanton, or "kink," which leads from ~=-. at t=-co 

to f>=+t/>c at t=+(X) while crossing ;=0 at t=a, is given by 

;,. = "0 [1-e x p ( -m It - a I )] £ (t- a) • (2.17) 

We will refer to the place where the kink has .=0 as its 

location. The action of the kink is 

(2.18) 

The operators M and Mo are given by 

:I. :I. 2. . ~ 
M=-(d /dt )+m -2m o(t-a) (2.19) 

and 

J. :I. :I.
Mo=-(d /dt )+m , (2.20) 

respectively. The operator Mo does not involve the 

discontinuous behavior at ;, =0, since the ampl i tude in the 

denominator of W is the ampl i tude to remain at ; =-rJo • In 

the approximation of keeping only gaussian fluctuations 

ar ound ,p =- <J>o , the potential for this process is just 

m" ( rJ + ;. )7. /2, which leads to (2.20) for Mo. 
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With the model thus defined, we proceed to 

calculate W=(J, /Jo ) for one instanton. W is given by 

W=exp (-S, ) (K/Ko) , (2.21) 

where we have introduced the notation K and Ko for the 

integrals in the numerator and denominator of (2.6). Thus, 

K= ~[exp[- \-,(t)M "7(t)dt/2]]1r dl (t), (2.22) 

and 

Ko= ~exp[- ~.,(t)Mo.,(t)dt/2]]'iYd'1 (t). (2.23) 

We will calculate W by relating the path integral to the 

Fredholm determinant for scattering in the potential -2mt(t). 

The selection of the kink located at t=O is of 

course arbitrary. Owing to the translational invariance of 

the action, the tunneling will proceed with equal probability 

via the kink at t=a. The function lo=a ~;.'/~t represents, 

to first order in a, the fluctuation which tranlates the kink 

at t=O to t=a. Since the action is translation invariant, 'D 
must be a zero mode of M, i.e., 

M,. = [ (_d2. /dt"' ) +m" -2m S (t) ] "10 =0, (2.24) 
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From (2.17) we have 

,.,=a 4r, m exp (-m ItI ) , (2.25) 

which is easily seen to satisfy (2.24). 

We proceed to evaluate K and Ko by expanding '7 in 

eigenfunctions of M and Mo, respectively. We put the system 

in a large (one dimensional) box of volume V, by restricting 

t to the range -Vj2<t<Vj2. For the calculation of K, we 

expand '? as 

(2.26) 

where 

(2.27) 

and likewise for evaluating Ko' we expand, as 

(2.28) 

where 

(2.29) 
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substituting into the expressions for K and Ko, and changing 

variables of integration, we have 

K = Sexp(-l:,E"c!/2)'lrdc", (2.30) 
Ko \exp(-l'.E·~i[c'.:Tl. /2)'tt dc... 

Since the coefficients Cn and c~ are related by a unitary 

transformation, the Jacobian involved in the change of 

variables of integration cancels out of numerator and 

denominator in (2.30). 

The presence of the box shifts the lowest 

eigenvalue of M infinitesimally to a value Eo=O[exp(-mV)]. 

However, the integration in K over the coefficient Co 

belonging to this eigenvalue is still essentially 

non-gaussian, which reflects the translation invariance of 

the action. The functional integration is in effect summing 

up paths through kinks translated to locations a, each 

weighted in the overall amplitude W by the same action 

factor, exp (-S, ) • Ignoring terms of O[exp(-mV)], the 

discrete eigenfunction of M with zero energy is 

t =Jffi' exp (-m \ t I ) , (2.31) 

which has been normalized so that 

(2.32) 
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Comparing (2.25) and (2.31), we see that co=a +oJffi' and 

dco=+oJili' da. We interpret the integration over a in the 

standard manner as giving an overall volume factor, V. It is 

perhaps worth pointing out that integrating over c from -00 

to +00 and using the fact that Eo is not literally zero to 

make the integral converge would be absurd, since such large 

values of Co clearly correspond to allowing the translation 

parameter a to be much larger than the volume V [9]. 

Carrying out the gaussian integrations in K, and 

doing likewise for KD , we have 

<.) "..,. f4} -'I"
W= ( ;0 Jiii' da) [ (2T/E.) II (E" /E~ ) ] exp (-S.: ) • (2.33)S 

"" 

Since the operators M and Mo differ only by the potential 

-2m~(t), we can evaluate the quantity inside the square 

brackets in terms of the Fredholm scattering determinant 

scattering at energy -m~ • The energy is -m~ because of the 

m" in Mo. We have in the large-volume limit 

(2.34) 

(l/m~ )exp[ (-2/1r) ~k 'i>{k) {k'll.+m~f' dk], 

where the phase shi ft b is given by 

~(k)=Arctan{m/k), (2.35) 
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with b(~ )=0. The fact that the final result involves an 

integral just reflects the continuous spectra of M and Mo. 

Substituting for b(k), we can evaluate W as 

,,,. t 
W=[m ~o (m/'II') Jda]exp(-S;). (2.36) 

For (II/Jo ), the one instanton contribution is 

calculated as for (J, /Jo ). All gaussian integrations over 1 

remain the same, since the lowest order contribution in the 

non-exponential part comes from the instantons themselves. 

The one difference is in the "a" integration. For (J, /Jo ) , 

we simply got Sda=v. In (II/Jo ), we must calculate 

~ "',(T~a) f.(O;a)da, where ~(t;a) is given in (2.17) • For 

large T, this integral is 

~ f,.. (T; a) r;i. (0; a) da= f: [V-2T+O (T exp (-mT) ) ] • (2.37) 

'h..
Calling P=m(m/w) t, the expression for D(T,O) to 

this order is now 

D(T,O)= +oJ. 1+(V-2T)Pexp(-S,' )+ •.. (2.38)
I+VP exp(-~ )+ •.• 
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In anticipation of the final result, we notice that 

the numerator and denominator contain the first terms of an 

exponential expansion,exp[ (V-2T)P' exp(-S; ) ]/exp[VP·exp(-S; ) J. 

These will end up giving the desired behavior, 

exp[-(E, -Eo )TJ, as discussed on page 8. 

For multiple instantons, we consider the instantons 

to be well separated relative to their size. Then the total 

action for a configuration will be just nSi , where we have n 

instantons. Furthermore, the contributions from the gaussian 

fluctuations will just be the product of the contribution 

from each kink. To see this, the potential for the 

applicable M operator simply contains n widely separated 

single-instanton potentials. In a formula like (2.34), the 

total phase shift is just the phase shift accumulated from 

each single-instanton potential, leading to the desired 

result. 

As in the one instanton case, the locations of the 

n kinks are also arbitrary. There exist n eigenfunctions of 

M which have almost zero eigenvalues. These correspond to 

the fluctuations which translate each of the kinks 

separately. When we expand ~ in eigenfunctions of M, we 

will find n CIS which 

integrations are replaced 

locations, dCj = t Jni' dai' for 

have zero eigenvalues. 

by n integrations over 

each kink locat ion, ai. 

These 

kink 
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Carrying out the gaussian integrations, we find 

J~/Jo =(l/n!)P"exp(-nS.. ) Sda, da1, ••• da... (2.39) 

= ( 1/n! ) [VP· exp ( - S, ) ] " 

The (n! ) appears to avoid double counting instanton 

configurations while varying the a's. 

To compute (I ... /J.), we again consider the kinks to 

be well separated, so that the n instanton configuration is 

'" 
;"j(t)';r ';01'[ tI>.(t-aj )/';0]' (2.40),.' 

This has n kinks, each one located at one of the ai" Then 

the integrations over the a's give 

I ... /~ =(l/n!)p"'exp(-nS;) x (2.41) 

=(l/n!)[ S+.:(T;a) ~.:(Oia)da P·exp(-S.. )] . 

Thus the expression for the correlation function is 
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D(T,O)= f>.
1- I(l/nt) [(V-2T)P'exp{-S;)( (2.42) 
o 1: (l/n! ) [VP· exp (-S; ) r ... 

= exp [ - 2TP' exp (-S .. )] • 

In the large T limit, we have now demonstrated that 

the correlation function decays exponentially, and that the 

energy splitting is 2P·exp(-m;: ). The lack of a constant 

term indicates that the ground state is left-right symmetric. 
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III. THE NON-LINEAR SIGMA MODEL 

The next model we consider is the non-linear v 

model. This is a two dimensional (one space, one time) model 

which is both asymptotically free [10] and contains 

instantons [11], just as gauge theory does. By studying this 

model we hope to gain insights into QeD. Although the ~ 

model does not have confinement, the analogous problem is to 

understand the absence of symmetry breaking and the existence 

of a purely massive spectrum in two dimensions. The action 

for the rr model is 

(a=1,2,3) (3.1) 

subject to the constraint (n&) (na)=l. Here n· (x) is a unit 

vector in three dimensional group space, f is the 

dimensionless coupling constant, and we have already changed 

from real time (t) to imaginary time (x,). This model is 

equivalent to the Heisenberg ferromagnet, where each na (x) 

represents the spin of a ferromagnet located at t. 

This model contains instantons. To find them, we 

look for finite action solutions of the equations of motion 

from (3.1). Now, the values of n° (x) can be considered to 
_1 

range over the surface of a three dimensional sphere, S • 

However, the two dimensional coordinate space with the point 
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at infinity identified is topologically equivalent to another 

three dimensional sphere, 51. Therefore, any configuration, 

n~ (x), can be thought of as a mapping of the coordinate 
I. _a.

sphere, 5 , onto the group sphere, 5. It is well known that 

there exist an infinite number of classes of these mappings, 

where a mapping in one class cannot be continuously deformed 

into a mapping in a different class. The integer which 

characterizes the degree of a mapping is 

(' a II e 1
Q=(1/8"')J(..b,~.,..,Jn ,.n d..,n d x. (3.2) 

By switching to spherical coordinates on the group sphere, 

nil (x) = [sin 9(x) cos. (x), sin B(x) sin t. (x), cos 8(x)], this 

becomes 

Q=(1/41'J') ) sin 6(x)d 9(x)d !/J (x). (3.3) 

Thus Q, called the topological charge, counts the number of 

times that the coordinate sphere, 5~, is covered by the 

mapping. 

In each topological sector, the action has a 

specific minimum. Consider the inequality, 

(3.4) 
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Squaring and integrating over all space, we find 

(3.5) 

or, for a mapping of degree Q, 

(3.6) 

Thus, the action in each sector is limited by (3~6). A 

configuration for which the bound is saturated will 

necessarily solve the equations of motion for n*(x), since 

that configuration will be at a local minimum. To saturate 

the bound, we let 

The solution to (3.7) is not immediately apparent. 

It is convenient to introduce new variables which are the 

stereographic projection of nA (x) onto a two dimensional 

plane, 

:I. 2. -I n, =2w1 (w. +wa. +1) , 

to 2. ., n1 =2wa (w, +w:a. +1) , 
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and 

I. I. 1 2. 'I. 1-'n" =(w, +w1. - ) (w I +wa. + ) • (3.8) 

These variables satisfy the constraint, (n~) =1. In terms of 

the w:, (3.7) becomes 

(3.9) 


or more familiarly, 

= ')w~ = - 4W2. (3.10) 
')x, •1 x" 

These are just the Cauchy-Riemann conditions. Their solution 

is W=WI +iwa,=f(z) with z=x,+ixa. In general, f(z) can be an 

arbitrary function of z, but requiring that S be finite only 

allows those f(z) 's which are rational functions of z. If 

f(z) is written as p(z)/q(z) with p and q polynomials, the 

topological charge is just the maximal degree of p and q. 

The most general form for a configuration with 

topological charge Q is therefore 

Q , 

w(z)=cT1(z-a;) (z-b,)- • (3.11) 
~" I 
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Here aj, b i , and c are all complex. When z=a;, (for a; one 

4 1\of the zeroes of w), ~ points directly down (n=-e3 ), and 

when z=b.:, ~ points directly up (A.=+~3)' 

There are two ways of writing the most general 

instanton with topological charge Q, depending on the 

boundary conditions one wishes to place on A at spatial 

infinity, Izl--.CIO. We will fir st exhibit the two cases for 

a single instanton solution. For the first case, we let the 

a vector, which we will call the spin, at infinity be 

arbitrary, and 

w=c .(z-a, ) (z-b.)-. • (3.12) 

Here, a" b, , and c are all complex. At spatial infinity, 

the spin is oriented such that w=c. From (3.8), it is clear 

that when z is near a" the spin points down, and 1 ikewise 

when z is near b l , the spin points up. We will see later 

that this solution can be interpreted as a positive charge 

located at ~ and a negative charge located at b, • 

The other case pins the spin up at infinity. This 

is made most general by performing a global 0(3)/0(2) 

rotation, R ( e , I> ), on the spins to or ient the spin at 

infinity in any desired direction, ~-tR(&,~ )~. The extra 

possible 0(2) rotation is divided out since it represents the 
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rotation parallel to the 3-axis, which does nothing to a spin 

already pointing up. Denoting the solution with the spin up 

at infinity as w., we write 

Wv. = ( z - Z I ) (r I) 
-I 

• (3.13) 

Here, z. and r. are complex. Near z=z" the spin points 

down. The magnitude of r, is the size of the instanton. It 

is a measure of how fast the spin turns over from up at 

infinity to down at z,. The phase of r, just orients the 

spins relative to the spatial axes. 

We see that w. is described by four real 

parameters, while w has six. Performing the rotation R on 

the A vector corresponding to w~ gives us two more 

parameters, e and + , equalizing the number of parameters 

for both cases. 

The most general instanton with arbitrary spin at 

infinity is 

Q , 

w=c1l (z-a;, ) (z-b~ )- . (3.14),. , 

This will be interpreted as a collection of positive charges 

at each ai and negative charges at each bi. For the spin 

pointing up at infinity, we have, for the most general 
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instanton, 

W'lol ::: [ i: 
~ 

((z-z; ) /r;, )1 f' . (3.15) 
I=' I 

When Z is near any Zj, this looks like a single instanton 

located at z. with size r, , so this will be interpreted as a 

collection of single instantons located at each Z•• To make 

w~ most general, we must perform the rotation on the spin at 

infinity. The spin at infinity will point in the (e,;,) 

direction when 

w=[e"cot(9/2)] [w,,-tan(9/2)] [w",+cot(0/2)] • (3.16) 

Let us now exhibit the general path integral for 

this model, 

(3.17) 

=)VdW*dW(l+t?w)' exp[- (2/f) ~ d.... W'* d.... w(l+w.. wfi.]. 

The first path integral is expressed in terms of the unit 

spin vector, n 
,.. 

, with the b-function imposing the proper 

constraint. The second path integral is expressed in terms 

of the previously introduced complex w, which automatically 
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satisfies the constraint. Ultimately, one wishes to compute 

correlation functions by inserting fields into the integrand 

of (3.17), but for now, we concern ourselves with the path 

integral as is, and consider its multi-instanton expansion. 

This will correspond to the quantity 

calculated in the last chapter. 

We first consider the single instanton contribution 

to ( 3 • 1 7), w h i c h we will a 1 so call J I. Th i s calcuI at ion has 

been done in other places [12]: we will only sketch the 

method here. 

As in the second chapter, w is expanded about its 

instanton solution, w=w'+l ' where w, stands for an instanton 

configuration. We use the form (3.13) to express Wi. Again, 

only up to quadratic terms in, are kept. Letting (J, /Jo ) 

once again represent the amplitude for going through one 

instanton normalized by the amplitude with no instanton, we 

find 

J. = exp(-S, ) (3.18)
J; 

Here, M(x) and Mo(x) are second order differential operators. 

The single instanton action is 

(3.19) 
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which can be seen from (3.6). 

The small deviation, , , is expanded in 

eigenfunctions of M, and the product of the non-zero 

eigenvalues thereof is computed, with a like process occuring 

for Mo. Here, unlike the one dimensional case of Chapter II, 

the ratio of the eigenvalues of M to the corresponding free 

eigenvalues is infinite. This infinity is regulated using 

the Pauli-Villars technique. The ratio of the eigenvalues is 

just the ratio of the determinants of the M and Mo operators 

(det M/det Mo). This ratio is replaced by 

It 

(det M/det Mo)11 [det (M+m~ ) /det (Mo +m~ ) ]C~ , (3.20), , ,,.. , 

where the m. are large regulators of alternating metric, 

~ =±l. The integer R is chosen to render (3.20) finite, with 

!. e.: =-1, te. (m.)' =0, and Le. In m· =-In J\ , where A is the 
1, ~.' i"" 

regulator mass. The infinity now appears as exp[ln (\r,I"l\t)]. 

The coupling constant f is then interpreted as the bare 

coupling at A and the infinity is removed by the one loop 

renormalization of the coupling constant, 4~/f(A)= 4~/f(~)+ 
1 :I.In(1\ /p ). In the process, a renormalization point mass, p , 

has appeared. 

The operator M also has some zero eigenvalues. In 

Chapter II, a zero mode occured when the fluctuation ~ 
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corresponded to a simple translation of the instanton, i.e., 

the instanton was perturbed in a direction that did not 

change the total action of the configuration. In this model, 

there are six parameters which can be varied without changing 

the action. There are thus six zero modes of Mi two 

correspond to translating the instanton, one to changing the 

size of the instanton, one to changing the orientation of the 

instanton relative to the spatial axes, and two which change 

the value of the spin at infinity. These parameters are all 

integrated, as "a" was integrated in (2.33). 

Actually, the form of (J,/Jo ) can be easily 

guessed. It should be dimensionless, and must have both z, 

and r, integrated, so it must contain the factor 

This is the only dimensionless quantity which 

preserves the translational invariance. From the action, we 

get exp[-4r./f(j' }+In( \r,t1.p1. }], with the coupling at the 

renormalization point, f' . This is the only renormalization 

group invariant expression possible, i.e., it satisfies 

-41f/f(~}+ln( \r,lp 'l.}=-41r/f(j" )+In( \dp"}. The final answer for 

(J, /Jo ) is 

(3.21) 

where we have separated ~ from p in the logarithm. Notice 

that there is no integration over e or f in this equation. 
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Since 9 and; change the global or ientation of the spins, 

the zero modes of M are also zero modes of Mo. Therefore, 

the same integration )sin ede dt> occurs in both J, and J o , 

and divides out. 

The expression (3.21) has a new problem not 

encountered in Chapter II. For a one dimensional situation, 

the scale size of the instanton is fixed by the potential; 

here it is free to vary as it wishes, and the integration 

over r, diverges at both large and small r I • Presumably, 

despite this, any physical quantities such as correlation 

functions will still be finite. 

A program similar to the one in the previous 

chapter to calculate the effect of many instantons cannot be 

carried out. There, it was assumed that two instantons had 

very little overlap (the dilute gas approximation). This was 

a very good approximation since the instantons have 

exponential tails and the interaction between them falls 

exponentially at large distances. Here, the spins approach 

their classical vacuum values slowly, e.g., n'3=l+O{ Ir. /zl1.) 

as Izl~~. So, there is no sharp distinction even between 

widely separated instantons. Furthermore, in integrating 

over the sizes of the instantons, one eventually will be 

considering instantons much larger than any separation. 

Dense, multi-instanton configurations thus must be calculated 
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exactly. 

Fortunately, two remarkable papers, one by Berg and 

Luscher [13], the other by Fateev, Frolov, and Schwarz [14], 

have recently appeared which succeed in evaluating the 

quantum fluctuations around multi-instanton configurations. 

They write instantons in the form of (3.14) instead of the 

form of (3.15). Their formula for the contribution to the 

vacuum-vacuum amplitude for topological charge 0 is 

'2. 1. Q
(I/O!) [LJ"1.exp(-41T/f(~»/f y.)] x (3.22) 

Here, L is a constant (the value of which is not germane to 

this discussion), p is the renormalization point, and f(~) 

is the renormalized coupling constant at the renormalization 

point. If the integrand of (3.22) is written as the 

exponential of a logarithm, (3.22) is easily recognized as a 

term in the grand canonical partition function of a neutral 

Coulomb gas, with positive charges located at each ai and 

negative charges at each b.. We will discuss the meaning of 

this result at the end of this chapter. 

The purpose of this chapter is to transform the 

result of (3.22) , written in terms of the a· and b·e• 
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parameters, into the more familiar language of locations and 

sizes of instantons, z.: and r.;. One expects a general form 

(l/Q!) [L exp{-41f/f(,p»/f '1 
~)] 

~ 
x (3.23) 

potential between instantons, arising from evaluating the 

quantum fluctuations about the Q instanton configuration. In 

the dilute gas region, \rJ« \a, -a~l , UQ would be expected to 

go to zero. Naturally, for Q=l, U,=O. 

The surprising result will be that UQ=O for all Q. 

In other words, the naive form one would write down with 

confidence only in the dilute gas region is an exact 

expression. Thus, even in regions where the instantons 

cannot be considered to be widely separated, the dilute gas 

formula nonetheless remains entirely accurate. 

We will first demonstrate the transformation for 

the case of one instanton, showing the general relationship 

between the two sets of parameters, and then go on to prove 

the general result for any number of instantons. 

The two forms for the instanton, w and w~, must be 
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equivalent after performing the global rotation (3.16) upon 

w~. Setting the two equal leads to 

'/Ic z-a l = e' cot (Q/2) (z-z, )-r, tan(9/2) (3.24) 
z-b, (z-z, ) +r, cot (&/2) • 

Equating coefficients gives 

a , =Zl +rl tan (9/2) , 

b l =Zl -r l cot (9/2) , 

and 

c=e~· cot(&/2). (3.25) 

Since c is a function of only e and t; , it pertains only to 

the factor SSin(9 )d S d~ , which is divided out. The fact 

that the form (3.22) contains no term with c reflects the 

overall 0(3) symmetry of the theory. 

Inverting (3.25) gives 

z,=[a,cot(9/2)+b, tan(9/2)] [tan(9/2)+cot(6/2)[' 

and 
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., 
r , =[a,-b, ] [tan(B/2)+cot(9/2)] , (3.26) 

so we see that z, is effectively a center of mass coordinate 

for a, and b and r, is an effective relative coordinate.
" 

So, considering an instanton to be composed of a pair of 

unlike charges, its location is given by the center of mass 

of those charges, and its size is proportional to the 

distance between them. 

The single instanton Coulomb gas contribution to 

the partition function is 

-i 

\ a, -b,1 , (3.27) 

where we let K be the fugacity, K=L(~~/f~)exp(-4T/f). Then, 

changing variables gives 

(3.28) 

and 

1 1. , Ii 1. 1.
d a. d b , = 'd(a, ,b, )/~(Zl Ir,) d z, d r, 

.r. 1. 2­
=G d z, d r, (3.29) 

Since it will be occuring quite often, we designate 
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G=[tan(9/2)+cot(9/2)]. In the above equations, we treat all 

variables as complex, and the complex Jacobian is computed in 

the standard way. Then, the volume elements are related by 

the square of the norm of the Jacobian. 

Finally, we find 

, (3.30) 

as promised. The dependence on c cancels, as it must, since 

on the right hand side of (3.30), everything is defined 

relative to the spin at infinity, and is therefore 

independent of c. 

For two instantons, the solution with spin up at 

infinity is 

-,
w,. = [ (z- z. ) (z- z ~ ) ] [r I (z- Z 2 ) +r So ( z - Z I ) ] • (3.31) 

Equating this with the other form for a two instanton 

solution gives 

(z-a. ) {z-ad = (3.32) 
(z-b. ) (z-b,) 

2) 
2) • 
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From this equation, a., a~, b" and b'1 can be solved for in 

terms of z" z"', r, ; and r1. simply by factoring the quadratic 

polynomials on the right hand side of the equation. This 

factoring could conceivably (but not practically) be done for 

three or four instanton solutions, but would fail (in 

general) for five or more. Therefore, with an eye on 

generalizing the procedure, a different method of making the 

variable change will be employed. 

We first regroup the terms in (3.32), and use these 

regroupings to define new variables, 

Z1_A • z+A.Aa. = (3.33)
zl. -B, z+B, B1. 

(z~-Z, z+Z, Zd-(R, z-R1.)tan(9/2) 
(z'1-Z,z+Z,Zs)+(R,z-R'1)cot(e/2) 

The new variables are chosen to be 

B, :b, +ba. (3.34) 

on the left hand side, and 

Z, =z, +z:a. R,=r,+rz. (3.35) 
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on the right hand side. Simple inspection allows us to 

relate the two sets of variables, 

(3.36) 

and 

B, =Z. -R. cot ( 9/2) , (3.37) 

For the general case of many instantons, (3.33-3.37) are 

easily generalized. 

Let us now step back and survey the route by which 

we will tr avel from (ai' b i ) to (z .. , r. ). The var iable changes 

will be as follows: 

(a .. ,bi )--J(A; ,B.. )--+(Z .. ,R .. )--+(z., ,r,' ), (3.38) 

and the quantity we wish to evaluate is the integrand of 

(3.22) , 

~ 

11 ttl I It~"d a; d b i a, -a.. l·2 b l -b1 (3.39) 

http:3.33-3.37


42 

The Jacobian of the volume factor occurs as 

1­
1J d t 

a. d1. b~ = \ Ci>(a~ ,b:) \ 1) d 
1 

Z.: d1- r.: (3.40) 
• ')( Z,: , r,:) • 

~ 1­

= ') A~'B':)\.\d(A;'Bl)\~\,)(Z~'R~)\ 1}d1-z~dt.r;

~(a.;. , b,:) 'C) ( z.: ,R.) ~ ( z; , r~) • . 

These Jacobians all factor, 

')(A; , B:) = ')(A.:) )(B;) = (a I - a 2 ) (b I - ba ) , (3.41) 
i)(a, ,b.: ) ')(a.) )(b~ ) 

a. 
~(A. , B. ) = ')(AI,B,).~(AJ.,B~) = G , 
') (z.: , R... ) ') ( Z I , R,) ~ ( Z 2. , Rz ) 

and 

d (Z ~ , R.: ) = )(Z~) . )(R.:) =(z, -z1. ) (z, -z,,) , 

~(Zl ,r~ ) ')(z; ) l(r.) 


giving us 

(3.42) 
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For the corresponding steps with many instantons, 

we now use the fact, proven in the appendix, that the 

Jacobian in going from c~ to c. is 

(3.43) 

where the Ci are defined by 

II II- I II-I " 
Z -C, z +••• +(-1) C"~lz+(-l) C'" (3.44) 

=(z-c,) (z-c:a.) ••• (z-c~). 

These describe precisely the relation between the pairs 

(A, ,a,), (Bi ,b. ), and (Z, ,z,:). Then, we find in general 

It 

I~(A. )/)(a.)l1 =iT la, -a·l~ , (3.45)
~'i a 

tit = G , 

and 

11~(Zi. )/~(z.: )1 =11" Iz,: _Z.,l • 
'J' 1 
"J 

The (R.~ri) transformation is linear in terms of these 
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variables, with the same coefficients as the Jacobian in 

(Zi~Z.:), Ri=~(')Z':/')Zj)rj' so that 
" 

It 

I")(R.: )/~(rL )\1. =1T Iz; -z1{' , (3.46) 
':I.j 

also. 

Therefore, the general Jacobian of the volume 

factor is 

(3.47) 

To complete the transformation, we must find 

in terms of the (z, ,r.: ). For two instantons, we 

define a new set of variables, C" (i=l, 2, 3, 4), by 

Z'I -C, Z3 +C, z'l -C, z+C., = (z-a. ) (z-a2,) (z-b. ) (z-b:a.) 

(3.48) 

The second equality follows from the definitions of A~ and 

B.. These C. 's are no more than an artificial set of 

var iables which are used as a tool to calculate 'trIa. _b;l1. • 

By (3.43), 
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1 

\~(C. )/}(a.: ,b. )12. = 'a, -at-ft.· lb. -baJ):r \a~-bal1. • (3.49) 
"j" 

However, from (3.43-3.44) we also have 

using the product r~le for Jacobians, we finally get 

(3.50) 

which is the desired quantity. 

With a simple generalization of (3.48), it is 

simple to show the result for an arbitrary number of 

instantons, 

(3.51) 

To evaluate (3.50-3.51), the relation between A, B, 

and C is found from the second equality of (3.48), and the 

Jacobian, written in terms of (Ai,B.) is first converted to 

(Z .. ,R,) and finally to (zi,r,')' yielding 

(3.52) 

for two instantons, and 

http:3.50-3.51
http:3.43-3.44
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(3.53 ) 


for the general case. Equation (3.52) will be derived here, 

illustrating the method used for the general case, but the 

general case, (3.53), will be proven in the appendix. 

The Jacobian in (3.50) is 

(3.54)1 o o 

B, A, 1 1 

o 0 B2, A2, 

1 1 o o= 

Z, -R. cot (&/2) Z, +R, tan (8/2) 1 1 

Z2,-R1 cot(e/2) Z,+R,tan(9/2) Z, -R,cot(9/2) Z, +R,tan(8/2) 

Instead of evaluating this determinant as is, and then 

performing the variable changes, we will instead apply 

standard determinant identities on (3.54), and evaluate the 

determinant only after making the variable changes. One such 

identity says that any column of a determinant may have added 
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to it any multiple of any other column. Applying this to 

(3.54) leads to 

(3.55)o o o 

Z. RI I 0 

o 0 Z2, Rz. 

One factor of G came from each pair of columns. Calling the 

remaining determinant D, we have 

(3.56 )D= I o 

o Z, za. r, zz.+r2,.z, 

Recombining the first two columns, we are left with 

D= (3.57) 

The interesting thing about the matrix corresponding to D is 

that it factorizes into three matrices. Thus, D is the 

product of the determinants of those three matrices, 
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D= 1 1 1o (3.58) 

II 

o z" 1 

Each of these determinants is easily computed, giving (3.52) 

directly. This factorization occurs for the general 

multi-instanton case as well. 

Thus, the integrand of (3.22) transforms into 

It k 1t:A­
if d' a. d1. bi 11 [ Ia, -a,/' Ib, -bJ' (IT \a. -bJf (3.59)
'a. i<j ',) 

If 1. 'l. -:3. 

= IT [d z,' d r,: Ir./ ] • 
II' , 

Finishing the transformation requires one final 

factor. The Coulomb gas partition function contains a factor 

(11k!) 
1. 

• Due to the exchange symmetry be~ween all the a, 's 

and all the b~ 's, each integration requires a factor of 

(11k!) to avoid double counting any configuration. However, 

with z. and r. I these two variables appear as a pair and must 

be interchanged as a pair. Thus, the partition function 

written in these variables requires only a single factor of 

(11k!). 

We have now demonstrated the equivalence of the 

Coulomb and dilute instanton gas pictures, that is, that U~=O 
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for all Q. Such a result is completely unexpected, for while 

instantons do not interact classically, there is no reason 

that the quantum fluctuations should do likewise. Yet, by 

choosing the proper var iables, z~ and r. , we can cause the 

interaction to vanish. This is not surprising in and of 

itself, but that the proper variables are precisely those 

variables for a dilute instanton gas. 

A fair amount is known about the classical neutral 

Coulomb gas [15]. The Coulomb gas at temperature T with k 

positive charges and k negative charges has a potential 

(3.60) 

so that we have the T~(qa/2kB) limit of the Coulomb gas. 

The temperature T=(q~/2kl) is the point where the gas 

condenses from a plasma phase to a molecular phase [16]. 

Furthermore, in the grand canonical ensemble at fixed 

chemical potential, the particle density diverges as 

In the present context, the grand canonical 

ensemble corresponds to the sum over all values of Q, and the 

charged particles in the Coulomb gas correspond to points 

where the non-linear model ~ vector is ±~3' Thus, we have(T 

a situation in which the instantons are sitting directly on 

top of each other, but as we have shown, without interacting 

in the least. The fact that we have infinite density might 
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be worrisome, except that physical quantities have finite 

limits as T~(q~/2k8). By physical quantities we mean 

propagators, vertex functions, etc. The vacuum to vacuum 

path integral itself is just the shift above the free vacuum, 

a~d is not of direct physical interest. When a propagator is 

calculated, the divergences ar ising from the r.: integ rations 

cancel in the ratio. 

It has been shown that observables in the massive 

Thirring model have corresponding observables in the 

classical Coulomb gas [16,17]. The Thirring model has the 

Lagrangian density 

(3.61) 

where m=c(l'/f(j-C ))exp[-4'h'/f("p)] (c is an uninteresting 

constant) and g=(2k6T/q2-1)~ • Thus, the observables in the 

T=(q1/2ks) Coulomb gas have corresponding observables in the 

free massive Dirac field theory. So, the instanton expansion 

has been sufficient to show dynamic mass generation in the 

non-linear ~ model. In other words, by calculating the 

quantum fluctuations around solutions of the classical 

equations of motion, a model which on a purely classical 

level is scale invariant, and therefore massless, has been 

found to describe massive behavior. 
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However, the above instanton expansion cannot be 

tell ing us the whole story for the non-linear rr model. 

There also exist anti-instanton solutions to the field 

equations, found by reversing the sign in the inequality 

(3.4). A full description of the theory requires using a 

mixture of both instanton and anti-instanton solutions. We 

can show this by exhibiting a correlation function for which 

the expansion with only instantons fails miserably. First we 

consider the quantity 

+00 

<f(x) >= L <f(x) >Q=O. (3.62) 
Q=-co 

Here, (f(x» is the expectation value of the instanton density, 

and <~(x»Q is the expectation value of the instanton 

density in the Q instanton sector. If we let y(x) contain 

configurations with instantons or anti-instantons only, with 

no mixtures of both, the plus and minus symmetry on Q forces 

the sum to zero. 

Let us now consider 

+(l() 

<j(x)j (0) >= 2:' < f (x) ! (0) >Q • (3.63) 
(~>: -to 

By cluster decomposition properties, as x gets large, 

<!(x)f(O» should go to <f(x»<r(O». However, with only 

instanton configurations, each term in the sum on the right 



52 


hand side of (3.63) is greater than zero, preventing 

<r(x)f(O» from ever approaching zero. Therefore, including 

only instantons and only anti-instantons can lead to problems 

with some correlation functions. What is needed are 

configurations which contain both instantons and 

anti-instantons. This will accomplish the desired vanishing 

of <! (x) > on a local basis, and give the correlation 

function <!(x)f(O» the correct cluster properties. 

where does this leave us? Classically, instantons 

do not interact, since SQ=QS•. However, instantons and 

anti-instantons do interact, that is, 

S(instanton,anti-instanton) S(instanton) + 

S(anti-instanton), so there must be an effective potential 

between instantons and anti-instantons. The effects of 

interactions between instantons and anti-instantons are 

important in any complete calculation. The fact that 

instantons do not interact either classically or quantum 

mechanically ensures that the instanton-anti-instanton 

classical effects will be dominant in any calculation. We 

will not discuss the difficult problem of computing 

instanton-anti-instanton interactions in this thesis. 

One can hope that the situation in gauge theory 

will be similar. The non-interaction of instantons in the 

non-linear rr model raises hopes that they do not interact in 
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gauge theory, or if they do, that their effects will be 

small. These results give added credence to a program such as 

that of Callan, Dashen, and Gross [18,19,20] in calculating 

with an instanton-anti-instanton gas in gauge theories. 
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IV. THE SIGMA CROSS SIGMA MODEL 

In this chapter, we introduce a new class of models 

which are four dimensional generalizations of the two 

dimensional non-linear ~ model. The motive for doing such a 

thing is that we hope to lift two dimensional ~ model 

results to these four dimensional theories and eventually 

relate those results to non-Abelian gauge theories. The 

reason that we will be able to relate the two is that while 

these models are still non-linear ~ models, their actions 

are also in non-Abelian gauge theory form. These models thus 

provide a link between non-linear ~ models on one hand and 

non-Abelian gauge theories on the other. They are 

topologically non-trivial, and possess the same SU(2) 

instantons as non-Abelian gauge theory. In addition, they 

have a liN expansion and are asymptotically free, though to a 

lesser degree than SU(2) gauge theory. 

Actually, the non-linear u model is just the first 

in a series of two dimensional models, the CP(N-l) models 

[21,22]. The new class of models we will introduce 

generalize the entire set. Before we generalize, we will 

make a short detour and introduce the CP(N-l) models, then go 

on to generalize the O(3)~CP(1) ~ model and finally extend 

it to generalize all CP(N-l) ~ models. 
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The CP(N-I) models contain complex fields, z~(x), 

(~=1,2, ••• ,N), with all fields related by a space-time 

dependent phase identified. This introduces a U(l) gauge 

field. The action is 

- 2.S= (N/f) SD}o' z· D,...z d x, \zOlll. =1, (4.1 ) 

with the covariant derivative Dp=~-Z.~pz, so that the 

quantity z.~z is acting like a U(l) gauge field. 

Specializing to the case N=2, the 0(3) non-linear 

~ model and the CP(I) model are equivalent. Here the 

fields, z~, are complex spinors and members of the group 

SU(2)~0(3)~CP(1) and are related to the 0" model ~ vector. 

The U(l) gauge field appearing in the covariant derivative 0,... 

has its origen in the fact that the 0(3) n vector may have an 

0(2)=U(1) rotation performed about its own axis without 

affecting it. The formula relating the ~ vector to z is 

(4.2) 

Substituting this into the ~ model action, (3.1), leads 

directly to the CP(l) action, (4.1). In terms of w, the 

stereographic projection of A, z takes a simple form, 

(4.3)z = l;) (1+w*wj'" 
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Then, the gauge field is 

Ap = I wit "d,.. w-w d .... w" (4. 4) 
2' (l+w·w) 

The only role the gauge field plays in this theory is that 

the topological charge can be written in terms of the field 

strengths from A~, 

(4.5) 

The key to generalizing the 0(3) ~ model to four 

dimensions and obtaining similar instanton structure is to 

generalize the formula which bounds the action, (3.4). For 

four dimensional space it is natural to consider the group 

0(5), in complete analogy with using 0(3) in a two 

dimensional model. We introduce a unit vector in 0(5) group 

space, nA (x), (a=l, 2, 3, 4, 5), so that n" (x) lies on a five 

-"fdimensional sphere, S • However, four dimensional coordinate 

space with the point at infinity identified is topologically 

equivalent to another five dimensional sphere, S¥. The 

'-'1
mappings of coordinate space s~ onto the 0(4) group space S 

fall into distinct classes that cannot be continuously 

deformed into one another. This is in complete analogy to 

the two dimensional case. The integer which characterizes 
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the degree of the mapping is now 

Switching to spherical coordinates on the group sphere shows 

that Q, the topological charge, counts the number of times 

that the group sphere is covered by the mapping. 

There is a natural route from the topological 

number, Q, to the action of the theory. In both the 

non-linear ~ model in two dimensions and non-Abelian gauge 

theory in four dimensions, the action for instanton solutions 

is equal to the modulus of the topological charge. For the 

specific case of the 0(3) ~ model, this condition is true 

when the equality holds in (3.4). When the equality is 

squared, action terms come from the squares of the two 

components, while the topological charge comes from the cross 

term. We thus seek a similar inequality that will give the 

0(5) topological charge as a cross term and we will designate 

the squared terms as the action of our model. The requisite 

inequality is 

(4.7) 

which by the above procedure gives the action 
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(4.8 ) 

As in the 0(3} ~ models, the inequality bounds the action, 

(4.9) 

The bound is saturated by the instanton solutions. We will 

return to these later. 

Thus, the action of this new model is given by the 

square of a quantity which is anti-symmetric in both its 

spatial and its group indices. This condition is forced on 

us by the €-symbols in the topological charge, (4.6). The 

totally antisymmetric quantity 

represents the rate of sweeping out area on the ab plane 

tangent to the group sphere. For the non-linear u model, 

..
the analogous quantity, OJ' n , represented the rate of 

sweeping out length on the line in the a direction tangent to 

the group sphere. Since F;: is essentially the 2-form which 

is the exterior product of two I-forms, ~;n6, these models 

are aptly called trlHr models. 

We note at this point that it is convenient to make 

the stereographic projection of ~ as we did for the 0(3) 

model, 
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2. I :l 1. ·1 n.... =2woI (WI +W, +ws +w.. +1) , (4.10) 

and 

( 
1. 1. 1. 1. 1) (1. 1. 'L 1 1 )-1nl = WI +W... +w3 +w.. + w, +w... +ws +w.. + • 

This handles the constraint (n")' =1, and will have later use 

when we hunt for the instantons of the theory. 

The action,S, is terms of w is simply found, 

(4.11) 

As in the 0 (3) (j model, the (l"'I\CI model has a 

gauge degree of freedom. This is the freedom to rotate the 

0(5) ~ vector about its axis, which generates an 

0(4)=SU(2)xSU(2) gauge invariance. We will only use one of 

the 5U(2) subgroups and define a gauge field as in the CP(l) 

model. To do so, we need to generalize the complex w=w,+iw~ 

of (4.4) to accomodate the four w'" that occur in the 

stereographic projection of the 0(5) A vector. The natural 

object for this is the quaternion. The quaternion w is 

defined by w=- i 1"'",wOl.' where ~ =i and 1i =CT,: • The 2X2 matr ices 

CT. are just the Pauli spin matrices. Thus, Wis simply a 2X2 

matrix. 
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In complete analogy to (4.4) we define the 8U(2) 

gauge field 

......t ,..,... ""t,.,
A". =1 w~""w- 0'"" W w (4.12)

2' (l+wtQ) 

The set of gauge fields, A"., that can be found in this manner 

is not the complete set of all possible 8U(2) Yang-Mills 

fields. We have the subset which is constrained by (4.12). 

We can compute the Yang-Mills field strengths from 

the gauge field, (4.12), using F)A)/ =C>.... A,,-~)lA~+[A.P,A,,]. It is 

straightforward to show 

(4.13) 


The second equation is in a form reminiscent of the action of 

the model, (4.11), and in fact, squaring;" and taking its 

trace gives 

(4.14) 

=(1/2g1 
) Str [F,..., ~'" ]d~ x. 
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Note that the last equality of (4.14) is the standard gauge 

theory action. As in the CP(l} model, the topological charge 

can also be related to the field strengths. We get 

which is the standard gauge theory expression. It is 

interesting that the topological charge in gauge theory has 

an alternate definiton as the number of times n~ (x) covers 

the 0(5} sphere as ~ moves over all space. 

We have now succeeded in wr i ting our o-NI' model as 

a non-Abelian gauge theory with an SU(2) gauge field. It 

should again be stressed that the gauge theory form, (4.14), 

is not full SU(2) gauge theory, since the gauge fields are 

constrained by (4.12). It is also worth pointing out that 

the gauge field~ A , exists also in a generic 0(5) ~ model 

with S= S( d,..nA )'2. d"x, but its action has no special connection 

with the gauge theory action, as also occurs in the two 

dimensional 0(3) ~ model. 

We can also write A~ in a form reminiscent of the 

CP(N-l) models by introducing a quaternionic spinor, -r. 
Letting each entry in the spinor be a quaternionic 2X2 

matrix, we find 
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1\1" ("" ) ,., t N - '11 (4.16)T = : (l+w WJ 

in direct analogy with (4.3), giving 

(4.17) 

which exactly mimics the CP(l) case. 

In fact, we can find a simple relation between the 

Avector and 1r, as was the case in (4.2), 

(4.18) 

The '( matr ices are the standard Dirac matr ices. 

The 0(5) model discussed up to now can be 

generalized as the 0(3) ~ model was generalized to the 

CP(N-l) models. All we have to do is extend the spinor :r to 

having N quaternionic components. The gauge field Ap is 

always an 9U(2) gauge field, and is calculated by using the 

N-component ~ in (4.17). The field strengths and action are 

still given in the standard way, (4.14), so these theories 

are all 9U(2) non-Abelian gauge theories, but are still 

constrained by (4.17). 
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Returning to topological properties, we try to find 

instanton solutions by saturating the bound of (4.7) and let 

(4.19) 

The upper sign gives instanton solutions and the lower sign 

gives anti-instanton solutions. Expressed in terms of the 

projective coordinates, w«, (4.19) is equivalent to 

(4.20) 

In two dimensions, minimum action configurations of 

the 0(3) ~ model were described by the Cauchy-Riemann 

equations. Equations (4.20) represent a generalization of 

the Cauchy-Riemann equations to four dimensions. They share 

with the Cauchy-Riemann equations the property of providing 

an angle preserving mapping from x~ to w«, but the angle 

refers now to the angle between two infinitesimal elements of 

area, rather than infinitesimal line elements. (The angle 

between area elements is defined in the sense of an exterior 

or cross product). 

Solutions of (4.20) are instanton or anti-instanton 

configurations in the 0(5) model; they are also instanton or 
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anti-instanton configurations of the gauge field ~, since 

the topological charge can be written both in terms of 
J\ 
n, 

(4.3), and in terms of Ar, (4.15). The instanton 

(anti-instanton) solutions of gauge theory are known to have 

self-dual (anti-self-dual) field strengths. Here the self 

dual nature follows directly from the expression for 

F)4'" (A(w» , (4.13). Since is self-dual, a 

solution of (4.20) generates either a self-dual (instanton) 

or anti-sel f-dual (ant i- ins tan ton) F,...)I • 

Equations (4.20) have the elementary Q=l solutions 

wfl. =Xot . Substituting this into (4.12) produces the standard 

one instanton formula for the field strength in SU(2) gauge 

theory, 

where "'IJA.,r. is the famil iar It Hooft '1) -symbol [1] • The 

solution w.=x. may be transformed into the most general Q=l 

instanton form by performing translations and applying 0(5) 

transformations, giving 

,.., ,.." ,..,.,." ,., IW <1"'1 

w=c(x-a) (x-b) , (4.21) 

with w, x, a, h, and call quaternions, as the most general 

solution. This general solution just expresses the same ~ 

in a different gauge than the wot=X~ solution. 

Equations (4.20) do not have solutions for Q>l 
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[27] • The lack of 0>1 solutions to (4.20) does not 

necessarily mean that minima of the action with higher 

topological charge do not exist. The inequality (4.7) is not 

the only inequality which can be constructed which bounds the 

action, (4.8). The equations (4.20) have an obvious 0(4) 

symmetry. However, 0(4) contains within it two 8U(2) groups 

0(4) =8U (2) x8U (2) • It turns out that a restricted set of 

(4.20) corresponding to only one of these subgroups is 

sufficient to saturate the bound. However, it is not known 

at this time whether these restricted equations permit 

solutions of higher topological charge. 

It should be pointed out that nonetheless it is 

possible to construct configurations with higher topological 

charge which get very close to saturating the bound on the 

action. For example, using quaternion notation, the trial 

,,-,.. -. -I / -J-If orm w=(x+a) 2 + (x-a) /2 has 0=2, and an action which 

converges rapidly to 161r'1/g"" as lal~co • The computed action 

is already within one part in 10
-3 

of its minimum value for 

\al=2. This rapid attenuation could possibly allow a 

multi-instanton gas calculation despite lacking exact 

solutions. 

Although in the 0(5) ~A~ model we do not know how 

to write an instanton solution for 0>1 (or even if they 

exist), we can write higher instanton solutions using the 
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generalized models with the N-component ~. The theory with 

an N-component 1r can handle an instanton with O,N-l. We can 

thus write a general SU(2) gauge theory instanton with 

arbitrary 0 [24,25,26]. 

The 0(5) ~Ar model is asymptotically free. This 

can be seen by using the one instanton quantum fluctuations 

to find the one-loop coefficient of the Callan-Symanzic 

p -function, which describes coupling constant 

renormalization. The gaussian fluctuations about the 

instanton, (4.21), and the attendant zero modes must 

contribute a term 

(4.22) 

to the vacuum-vacuum path integral. This is the only 

possible expression which is translationally invariant and 

dimensionless with a renormalization point, )A- It 

corresponds to the 0=1 formula in the non-linear ~ model, 

(3.27) • 

Equation (4.21) allows the 0(5) spin at infinity to 

be arbitrary. As in the last chapter, the instanton could 

also have been written with its spin pinned up at infinity 

and then globally rotated. The spin up solution is 
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"'" "",..,,"" -Iw\t=(x-z) (r) • (4.23) 

We use z for the location of the instanton with size r. In 

terms of these parameters, the gaussian fluctuations 

contribute 

(4.24 ) 

where p will designate the coeffic ient of the J' -function. 

This formula corresponds to (3.21) in the last chapter. What 

we are doing here is repeating for the 0(5) model the 

demonstration in the 0(3) model that the instanton 

contribution can be written in terms of either the parameters 

describing a pair of charges or the parameters describing an 

instanton location and size. The two pictures must be 

equivalent after we rotate the spins at infinity in w~ to 

point in any desired direction. As in the last chapter, any 

final answer must be independent of those rotation 

parameters. So, using vector instead of quaternion notation, 

we make the formal identification that the relations between 

the variables from the last chapter, 

z.... = [a,. cot (9/2) +b.... tan (9/2) ]. G , (4.25) 

and 
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-I 

rJ" =raJ" -bJ" ]. G , 

will still hold for the single instanton case. (We continue 

to use G=[tan(e/2)+cot(9/2)]). We note here that trying to 

imitate these steps for higher Q will not work. Since the 

quaternions of the (J"'AfJ model do not commute like the 

complex parameters in the 0(3) ~ model, we are unable to use 

analogies of (3.34-3.35). 

Performing this variable change on (4.22) gives 

'-\II -11fr'/O;(".) r II ., \ l- '4\ 

)A e Jd a d b a-b (4.26) 

Demanding that (4.26) be independent of e forces n=4, and 

then setting (4.24) and (4.26) equal gives us p =4. Thus, 

the coupling constant renormalizes as 

(4.27) 

and the theory is asymptotically free. Compare this with 

SU(2) gauge theory, for which 

(4.28) 

http:3.34-3.35
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It makes sense that the coefficient in (4.26) is less than 

that in (4.27), since the 0(5) ~A~ model is a subset of the 

full 5U(2) gauge theory. Another way of looking at it is 

that the constraint, (4.12), only allows a restricted set of 

quantum fluctuations, thus reducing the coefficient of the 

ft-function. 

These models form an important intermediate step 

between the non-linear ~ model and non-Abelian gauge theory. 

Their very existence makes it likely that the results or 

methods used in the much simpler two dimensional models can 

be passed on to their four dimensional counterparts and 

eventually to gauge theories. Also, when it might not be 

possible to lift bodily a method in the simpler theory, that 

method can be a guide to the correct analysis of the more 

complicated models. 

One can also speculate that these models are more 

than just models. We have introduced a whole new class of 

asymptotically free field theories. It could be that a 

constrained version of non-Abelian gauge theory will 

adequately describe nature. 
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v. CONCLUSIONS 

This work has used the path integral approach to 

the semi-classical approximation to analyze a hierarchy of 

models which eventually leads to QCD. All the models have 

instantons, which are the primary foundation upon which the 

semi-classical approximation is built. By learning the 

effects of instantons in the simpler models of the hierarchy, 

we hope to apply the knowledge and insights we acquire there 

to the more complicated systems, and eventually arrive at a 

clearer understanding of non-Abelian gauge theories. The 

ultimate goal of this program is to learn how to handle a 

full instanton and anti-instanton calculation and show that 

it leads to confinement and the absence of symmetry breaking. 

In a simple one dimensional double well potential, 

we saw how instantons provide a link between the various 

classical vacua of a system. Regular perturbation theory, 

which starts in one of the classical vacua, can never really 

accomodate other classical vacua, and falsely predicts the 

breaking of the left-right symmetry of the model. A full 

instanton treatment allow tunnelings between the classical 

vacua and correctly shows that the symmetry is not broken. 

It furthermore shows the separation of the first excited 

state above the quantum mechanical ground state. 
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The instantons in QCD are not just simple kinks as 

in the one dimensional case, but have a complicated 

topological structure. QCD has an ordered, countably 

infinite number of classical vacua, and the instantons 

describe tunnelings between them. The two dimensional 

non-linear ~ model has a similar topological structure and 

multiple vacua, and provides a simpler environment in which 

to study this sort of instanton. 

In the sector with only instantons, the 

fluctuations about instantons behave like a classical neutral 

Coulomb gas. We have shown that given the proper variables, 

namely the intuitively pleasing variables of locations and 

sizes (as in a dilute gas of instantons), the instantons do 

not interact at all. This very important result means that 

the instantons interact neither classically nor quantum 

mechanically, thereby making much easier the task of doing a 

full instanton-anti-instanton calculation. It has 

implications for QCD in that it suggests that the interaction 

between instantons in that theory could also be small or 

non-existent. 

Finally, the new ~A~ models provide a new proving 

ground upon which we can test the applications of instantons. 

By being both ~ models and gauge theories, they bridge the 

gap between the theories and strengthen the applicability of 
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results from the non-linear ~ model to non-Abelian gauge 

theory. We have shown that the ~A~ models share the 

instanton structure and asymptotic freedom with both their 

cousins. While at this time not much else is yet known about 

these ~h~ models, it is probable that further research on 

these models will prove fruitful in understanding the proper 

role of instantons in such questions as confinement and the 

absence of symmetry breaking in Quantum Chromodynamics. 
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APPENDIX 


This appendix will compute two quantities for 

general Q. First, it will show that, for the variable change 

described by 

(A.I) 

the Jacobian of the transformation is given by 

Ie 

\ ") (A) I'd (a) 11. =11' \a. - a j \ 1. • (A.2) 
'~j 

Second, with variables defined as generalizations of 

equations (3.33-3.37) it will show that 

(A. 3) 

In this appendix we will use the notation that (A) will stand 

for the complete set of A;, etc. 

Ikl
Tackling the first one, we define the variable A... 

(n<k) as the A~ defined when (A.I) is a polynomial in z of 

degree k. 
(kl

Then, the A~ can be calculated in terms of the 

A(~-I) d ... an all. We find 

http:3.33-3.37
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A'h) AU'-n + 
I (A. 4)I = ale 

'I<) tlc-,) (k-I' tk} I or, in general, A~ =A~ +akA~" where we define Ao = and 
(hI "lI., 0 (I k .Al = > ). We notlce at this point that A I = '2. a· and 

j:' J 

lie) L (I.,
Ak ='.11 aj, so that (~A, /)a",,)=l (m~k) • 

J~' 

Before getting to actually computing the Jacobian, 

we would like to produce one final formula which turns out to 

be highly useful, 

A (t." / ) AU,-,) () c.. -" / "\ )(~ i l~ - ~, =-~ A~, ,aj (A. 5) 

(i=2,3, ••• ,k-2) 

(j=I,2, ••• ,k-l) 

(j=I,2, ••• ,k-l). 
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It· I
Alk-.,The latter equation is trivially true, since t-, ='iT a· and 

j:'1 J 

the former equation can be proven by a simple inductive 

proof. 

We now find 

(A. 6) 

(I, •• 'Ik_,'a(A<kl) = ')A, dA, . . . 1 
')(a) 'f)a, 'C!l a2. 

(k.,' tlr-. , (Ie •• , ') lI",) <l-O
A... +a" 'dA, d~ +~ aA, A, 
'C!la, ,. a, ') a2. ') a2. 

Uf-" d CI.·.) ') (". I) (t·.,dA~"")') A, +ak' Aa +'\ A1 AI. 
'<ta, ';} at ') aa ')aa, 

Recall that, for a determinant, a multiple of any column may 

be added to any other column without changing the value of 

that determinant. We thus subtract the ~~ column from each 

of the other columns and use (A.5) on the results. rfhis 
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leaves 

Ie-I
d ( A(!o') = (-1 ) ·.. 
~ (a) 

·. . 

• 

·.. 

II., 
=(-1)

_·1 'tr (a,,-a
J 

) [) (A(Ir.') )/~(a)]. (A. 7) 
j:I 

Equation (A.2) now follows inductively. 

We now move on to showing (A. 3) • Our strategy is 

as follows: We will define CIS as in (3.48) and compute 

)(C)/')(A,B) , which from (3.51) is trla, -b,jlt . The Jacobian 

,)(C)/)(A,B) will be the determinant of a matrix written in 

terms of the variables A and B. Leaving the Jacobian in 

determinant form, we will successively change from (A, B) to 

(Z,R) to (z,r), simplifying as we go. Let us remind 
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ourselves of the relationships between these variables. The 

pairs (A, a), (B, b) and (Z, z) all are related as in (A.l) 

or (3.44). The variables Rand r are simply related by 

R; = ~ (') z; liz; ) . r;. Additionally, all these var iables ar e 
" 

interconnected 

These are all exactly the relationships of chapter III. Thus 

the variables (A, B) in the Jacobian determinant will be 

changed to (Z, R) and finally to (z, r), while always keeping 

the Jacobian in determinant form, since this allows various 

determinant identities to be used in simplifying the 

expression. Finally, the matrix of the determinant will be 

found to be factorizable as in (3.58), with each term being a 

simple matrix. Hence the total determinant will be easily 

computable at this point. 

With CiS defined by 

~ 2~1 ~ [z -C,z +••• +(-1) Ch ]= (A.8) 

Ie Ie-. Ie Ir II·, II 
[ Z -A ,z +••• + ( -1 ) Ale] [z - B, z +••• + ( -1) BIe ], 

we find, 
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'~(C) = 1 1 a a a a (A. 9) 
,)(A,B) 

a 

a a 

• •• 0 

1 1 

• •• B, A I 

• •• B2. A2. 

a a a a 

a a a a 

The Jacobian is the determinant of a (2k)x(2k) matrix. After 

making the substitution like (3.36-3.37) the columns are 

manipulated pairwise and factors of G are extracted, yielding 

http:3.36-3.37
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k 
)( C) (A.lO)1 0 0 0 0 0= G

b(A,B) 
Z, R. 1 0 0 0 

Z'I.. R1 Z. R, 

1 0 

Z. R, 

o o o o 

o o o o • •• Z'" 

Notice that at this point we are really left with only a 

(2k-l)x(2k-l) size matrix. After substituting for (R), 

everything is now written in terms of Z, z, r , and 

(~Z,/~Zj). We again manipulate columns pairwise, starting 

with the second and third columns. In the process the 

identity (A.5) is used repeatedly, and the size of the matrix 

is reduced to (k)x(k). The determinant reduces to 
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(A.II) 

••• l:.r. z':' C~ Z2. /iJz~ ). ~ ~ 
01 

1:r . Z~·I (dZIc /")ZJ' )
.i ~ .; 

kirk • 

The matrix corresponding to D is the product of 

[)(Z)/~(Z)], the diagonal matrix (r.,r,., ••• ,r k ) and the 

matrix corresponding to D3 , where 

(A.12)D3 = · .. z, I 

· •• z.. 1 

• •• z.. 1 

The matrix corresponding to D3 is closely related to 

Vandermonde's matrix and hence has the determinant 
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II 

03=1T(z~-z.i)' (A. 13) 
'4~ 

~ 

The diagonal matrix obviously has determinant OJ. ='iT r· , and. ." , 

the determinant of [d(Z)/)(z)] has already been computed, 

0,=03 • Assembling all these pieces leads directly to (A.3). 
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