19 research outputs found

    An experimental study on micro-structural and geotechnical characteristics of expansive clay mixed with EPS granules

    Get PDF
    © 2020 Pavement structures constructed on the expansive soil subgrade experience a higher upward pressure compared to any other subgrade material. The upward pressure is caused due to high swelling and shrinkage characteristics of expansive clay soil. The present study has investigated and identified the mechanisms by which a remolded expansive soil can be modified to reduce the upward pressure and swelling (heave). To achieve this, a lightweight, environmentally friendly, and high pressure resistive expanded polystyrene (EPS) granules have been used with expansive soil s from three different locations of Madhya Pradesh state, India. The study has been performed to understand the swelling and strength characteristics of soil with and without the use of EPS (density = 21.6 kg/m3) as per ASTM specifications. The chemical and microstructural components of the expansive soil were investigated using autotuned total reflectance Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Several laboratory experiments, including optimum moisture content, maximum dry unit weight, grain-size distribution, liquid limit, plastic limit, shrinkage limit, free swell index, unconfined compressive strength, and pressure swelling tests were carried out on the statically compacted expansive clay soil specimen with and without EPS (0.25%, 0.50%, 1.00%). The maximum addition of EPS was considered as 1% as the very high expansion was observed, and beyond this, further addition of EPS was not feasible. The results show that the swelling pressure, expansion percentage, and time rate of swell decrease, whereas the unconfined compressive strength (UCS) increases with the addition of EPS. The inclusion of EPS in expansive clay soil exponentially reduced the heave and the upward pressure, whereas the maximum UCS was observed at 0.5%

    Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics

    Get PDF
    The indiscriminate use of organophosphate insecticide chlorpyrifos in agricultural crops causes significant soil and water pollution and poses a serious threat to the global community. In this study, a microbial consortium ERM C-1 containing bacterial strains Pseudomonas putida T7, Pseudomonas aeruginosa M2, Klebsiella pneumoniae M6, and a fungal strain Aspergillus terreus TF1 was developed for the effective degradation of chlorpyrifos. Results revealed that microbial strains were not only utilizing chlorpyrifos (500 mg L–1) but also coupled with plant growth-promoting characteristics and laccase production. PGP traits, that is, IAA (35.53, 45.53, 25.19, and 25.53 μg mL–1), HCN (19.85, 17.85, 12.18, and 9.85 μg mL–1), and ammonium (14.73, 16.73, 8.05, and 10.87 μg mL–1) production, and potassium (49.53, 66.72, 46.14, and 52.72 μg mL–1), phosphate (52.37, 63.89, 33.33, and 71.89 μg mL–1), and zinc (29.75, 49.75, 49.12, and 57.75 μg mL–1) solubilization tests were positive for microbial strains T7, M2, M6, and TF1, respectively. The laccase activity by ERM C-1 was estimated as 37.53, 57.16, and 87.57 enzyme U mL–1 after 5, 10, and 15 days of incubation, respectively. Chlorpyrifos degradation was associated with ERM C-1 and laccase activity, and the degree of enzyme activity was higher in the consortium than in individual strains. The biodegradation study with developed consortium ERM C-1 showed a decreased chlorpyrifos concentration from the 7th day of incubation (65.77% degradation) followed by complete disappearance (100% degradation) after the 30th day of incubation in the MS medium. First-order degradation kinetics with a linear model revealed a high k –day value and low t1/2 value in ERM C-1. The results of HPLC and GC-MS analysis proved that consortium ERM C-1 was capable of completely removing chlorpyrifos by co-metabolism mechanism

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    DIVERSITY OF ENVIRONMENTAL HEALTH MARKERS ODONATA AND LEPIDOPTERA IN GWARIGHAT REGION OF RIVER NARMADA, JABALPUR (M.P.) INDIA

    No full text
    River Narmada is the fifth largest westwards flowing river of India. Biodiversity protection and conservation is a national and international agenda and responsible for sustainable development of a region or a country and secondly Lepidoptera and Odonata are potential bio control agents of many invertebrates. Lepidoptera and Odonata assemblage along with river Narmada bank of Gwarighat region in Jabalpur has been investigated. A total of 41species have been distributed in two orders Odonata with 22 species and Lepidoptera with 19 species were sampled. Libellulidae with 9 species under order Odonata and Nymphalidae with 9 species under Lepidoptera are the most dominating families while others have fewer representatives. Mostly organisms were aggregated due to habitat specific nature and random distribution indicates availability of resource utilization to survive but, in the urban forest area, high anthropogenic disturbances were observed which creates high biotic pressure on forest. A detailed list of Odonata and Lepidoptera recorded from urban forest area is presented

    Viscosity of ternary liquid systems and the significant structure theory

    Get PDF
    613-615Significant structure theory (SST), developed by Eyring and coworkers, has been applied for the first time to evaluate the viscosity of carbon tetrachloride + cyclohexane + benzene ternary liquid mixture. The theoretical viscosity values obtained for this system are in agreement with those obtained from significant structure theory. Thus, it has been demonstrated that SST can be applied to multicomponent liquid systems

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableThe indiscriminate use of organophosphate insecticide chlorpyrifos in agricultural crops causes significant soil and water pollution and poses a serious threat to the global community. In this study, a microbial consortium ERM C-1 containing bacterial strains Pseudomonas putida T7, Pseudomonas aeruginosa M2, Klebsiella pneumoniae M6, and a fungal strain Aspergillus terreus TF1 was developed for the effective degradation of chlorpyrifos. Results revealed that microbial strains were not only utilizing chlorpyrifos (500 mg L-1) but also coupled with plant growth-promoting characteristics and laccase production. PGP traits, that is, IAA (35.53, 45.53, 25.19, and 25.53 mg mL-1), HCN (19.85, 17.85, 12.18, and 9.85 mg mL-1), and ammonium (14.73, 16.73, 8.05, and 10.87 mg mL-1) production, and potassium (49.53, 66.72, 46.14, and 52.72 mg mL-1), phosphate (52.37, 63.89, 33.33, and 71.89 mg mL-1), and zinc (29.75, 49.75, 49.12, and 57.75 mg mL-1) solubilization tests were positive for microbial strains T7, M2, M6, and TF1, respectively. The laccase activity by ERM C-1 was estimated as 37.53, 57.16, and 87.57 enzyme U mL1 after 5, 10, and 15 days of incubation, respectively. Chlorpyrifos degradation was associated with ERM C-1 and laccase activity, and the degree of enzyme activity was higher in the consortium than in individual strains. The biodegradation study with developed consortium ERM C-1 showed a decreased chlorpyrifos concentration from the 7th day of incubation (65.77% degradation) followed by complete disappearance (100% degradation) after the 30th day of incubation in the MS medium. First-order degradation kinetics with a linear model revealed a high k -day value and low t1/2 value in ERM C-1. The results of HPLC and GC-MS analysis proved that consortium ERM C-1 was capable of completely removing chlorpyrifos by co-metabolism mechanism.Not Availabl

    Design, Synthesis and Evaluation of Bifunctional Acridinine−Naphthalenediimide Redox-Active Conjugates as Antimalarials

    No full text
    A novel class of bifunctional molecules was synthesized integrating acridine (Ac) and redox-active naphthalenediimide (NDI) scaffolds directly and through a flexible linker (en). We evaluated in vitro antiplasmodial activity, physicochemical properties, and a possible mode of action. Theoretical studies suggested electronic segmentation between the electron-rich Ac and electron-deficient NDI scaffolds. Orthogonal Ac–NDI molecules showed activities in the micromolar to submicromolar range against a chloroquine (CQ)-sensitive strain of human malaria pathogen Plasmodium falciparum (maximum activity, IC<sub>50</sub>: 0.419 μM). The flexible Ac–en–NDI molecules were most potent and showed activity in the nanomolar range against both CQ-sensitive (with most effective compounds, IC<sub>50</sub>: 3.65 and 4.33 nM) as well as CQ-resistant (with most effective compounds, IC<sub>50</sub>: 52.20 and 28.53 nM) strains of P. falciparum. Significantly, with CQ-resistant strains, the activity of the most effective compounds was 1 order of magnitude better than that of standard drug CQ. Ac–en–NDI-conjugated molecules were significantly more potent than the individual NDI and Ac-based molecules. The structure–activity relationship (SAR) suggests that the flexible spacer (en) linking the Ac and NDI scaffolds plays a vital role in exhibiting improved potency. None of the molecules triggered hemolysis in culture, and the most potent compounds did not show cytotoxicity in vitro against mammalian fibroblast NIH3T3 cells at their respective IC<sub>50</sub> values. The other significant outcome of this work is that some of the investigated molecules have the potential to affect multiple processes in the parasite including the hemozoin formation in digestive vacuoles (DVs), mitochondrial membrane potential, and the redox homeostasis of the parasite
    corecore