78 research outputs found

    The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization

    Get PDF
    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form

    Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1

    Get PDF
    TopBP1 is a scaffold protein that coordinates activation of the DNA-damage-checkpoint response by coupling binding of the 9-1-1 checkpoint clamp at sites of ssDNA, to activation of the ATR-ATRIP checkpoint kinase complex. We have now determined the crystal structure of the N-terminal region of human TopBP1, revealing an unexpected triple-BRCT domain structure. The arrangement of the BRCT domains differs significantly from previously described tandem BRCT domain structures, and presents two distinct sites for binding phosphopeptides in the second and third BRCT domains. We show that the site in the second but not third BRCT domain in the N-terminus of TopBP1, provides specific interaction with a phosphorylated motif at pSer387 in Rad9, which can be generated by CK2

    An essential function for the ATR-Activation-Domain (AAD) of TopBP1 in mouse development and cellular senescence

    Get PDF
    ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins – Dpb11TopBP1, Ddc1Rad9 and Dna2 - all interact with and activate Mec1ATR. Each contains an ATR activation domain (ADD) that interacts directly with the Mec1ATR:Ddc2ATRIP complex. Any of the Dpb11TopBP1, Ddc1Rad9 or Dna2 ADDs is sufficient to activate Mec1ATR in vitro. All three can also independently activate Mec1ATR in vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development

    Rad17 Plays a Central Role in Establishment of the Interaction between TopBP1 and the Rad9-Hus1-Rad1 Complex at Stalled Replication Forks

    Get PDF
    Rad17 is critical for the ATR-dependent activation of Chk1 during checkpoint responses. It is known that Rad17 loads the Rad9-Hus1-Rad1 (9-1-1) complex onto DNA. We show that Rad17 also mediates the interaction of 9-1-1 with the ATR-activating protein TopBP1 in Xenopus egg extracts. Studies with Rad17 mutants indicate that binding of ATP to Rad17 is essential for the association of 9-1-1 and TopBP1. Furthermore, hydrolysis of ATP by Rad17 is necessary for the loading of 9-1-1 onto DNA and the elevated, checkpoint-dependent accumulation of TopBP1 on chromatin. Significantly, a mutant 9-1-1 complex that cannot bind TopBP1 has a normal capacity to promote elevated accumulation of TopBP1 on chromatin. Taken together, we propose the following mechanism. First, Rad17 loads 9-1-1 onto DNA. Second, TopBP1 accumulates on chromatin in a manner that depends on both Rad17 and 9-1-1. Finally, 9-1-1 and TopBP1 dock in a Rad17-dependent manner before activation of Chk1

    Nuclear DNA Replication in Trypanosomatids:There Are No Easy Methods for Solving Difficult Problems

    Get PDF
    In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens

    Sld2 binds to origin single-stranded DNA and stimulates DNA annealing

    Get PDF
    Sld2 is essential for the initiation of DNA replication, but the mechanism underlying its role in replication is not fully understood. The S-phase cyclin dependent kinase (S-CDK) triggers the association of Sld2 with Dpb11, and a phosphomimetic mutation of Sld2, Sld2T84D, functionally mimics the S-CDK phosphorylated state of Sld2. We report that Sld2T84D binds directly to the single-stranded (ss) DNA of two different origins of replication, and S-CDK phosphorylation of Sld2 stimulates the binding of Sld2 to origin ssDNA. Sld2T84D binds to a thymine-rich ssDNA region of the origin ARS1, and substitution of ARS1 thymines with adenines completely disrupts binding of Sld2T84D. Sld2T84D enhances the ability of origin ssDNA to pulldown Dpb11, and Sld2 binding to origin ssDNA may be important to allow Sld2 and Dpb11 to associate with origin DNA. We also report that Sld2T84D anneals ssDNA of an origin sequence. Dpb11 anneals ssDNA to low levels, and the addition of Sld2T84D with Dpb11 results in higher annealing activity than that of either protein alone. Sld2-stimulated annealing may be important for maintaining genome stability during the initiation of DNA replication

    Sensing of Replication Stress and Mec1 Activation Act through Two Independent Pathways Involving the 9-1-1 Complex and DNA Polymerase ε

    Get PDF
    Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping, sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (hTopBP1) protein. After DNA damage, Dpb11 is also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo after DNA damage and replication stress. We found that a ddc1Δdpb11-1 double mutant strain displays a synthetic defect in Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-essential subunit of DNA polymerase ε (Polε) are contemporarily absent, indicating that checkpoint activation in response to replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Polε

    Conditional genome engineering reveals canonical and divergent roles for the Hus1 component of the 9-1-1 complex in the maintenance of the plastic genome of Leishmania.

    Get PDF
    Leishmania species are protozoan parasites whose remarkably plastic genome limits the establishment of effective genetic manipulation and leishmaniasis treatment. The strategies used by Leishmania to maintain its genome while allowing variability are not fully understood. Here, we used DiCre-mediated conditional gene deletion to show that HUS1, a component of the 9-1-1 (RAD9- RAD1-HUS1) complex, is essential and is required for a G2/M checkpoint. By analyzing genome wide instability in HUS1 ablated cells, HUS1 is shown to have a conserved role, by which it preserves genome stability, and also a divergent role, by which it promotes genome variability. These roles of HUS1 are related to distinct patterns of formation and resolution of single-stranded DNA and γH2A, throughout the cell cycle. Our findings suggest that Leishmania 9-1-1 subunits have evolved to co-opt canonical genomic maintenance and genomic variation functions. Hence, this study reveals a pivotal function of HUS1 in balancing genome stability and transmission in Leishmania. These findings may be relevant to understanding the evolution of genome maintenance and plasticity in other pathogens and eukaryote

    A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae

    Get PDF
    In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55–S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases
    corecore