14 research outputs found

    Functional Conservation of DNA Methylation in the Pea Aphid and the Honeybee

    Get PDF
    DNA methylation is a fundamental epigenetic mark known to have wide-ranging effects on gene regulation in a variety of animal taxa. Comparative genomic analyses can help elucidate the function of DNA methylation by identifying conserved features of methylated genes and other genomic regions. In this study, we used computational approaches to distinguish genes marked by heavy methylation from those marked by little or no methylation in the pea aphid, Acyrthosiphon pisum. We investigated if these two classes had distinct evolutionary histories and functional roles by conducting comparative analysis with the honeybee, Apis (Ap.) mellifera. We found that highly methylated orthologs in A. pisum and Ap. mellifera exhibited greater conservation of methylation status, suggesting that highly methylated genes in ancestral species may remain highly methylated over time. We also found that methylated genes tended to show different rates of evolution than unmethylated genes. In addition, genes targeted by methylation were enriched for particular biological processes that differed from those in relatively unmethylated genes. Finally, methylated genes were preferentially ubiquitously expressed among alternate phenotypes in both species, whereas genes lacking signatures of methylation were preferentially associated with condition-specific gene expression. Overall, our analyses support a conserved role for DNA methylation in insects with comparable methylation systems

    Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from <it>Atta laevigata</it>, one of the pest ants with broad geographic distribution in South America.</p> <p>Results</p> <p>The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in <it>Atta laevigata</it>. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity.</p> <p>Conclusion</p> <p>The generation and analysis of expressed sequence tags from <it>Atta laevigata </it>have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.</p

    The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp <it>Chelonus inanitus </it>(Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences.</p> <p>Results</p> <p>About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein.</p> <p>An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the <it>Chelonus </it>lineage. Venom components specific to <it>C. inanitus </it>included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins.</p> <p>Conclusions</p> <p>The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of <it>C. inanitus </it>appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.</p

    Parasitic wasps' DNA laid bare

    No full text

    The genomic impact of 100 million years of social evolution in seven ant species.

    Get PDF
    Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general
    corecore