569 research outputs found

    A Quali-quantitative evaluation approach to pedodiversity by multivariate analysis: introduction to the concept of "pedocharacter"

    Get PDF
    A model has been developed for the interpretation of the complexity of pedological systems; this is referred to as “pedocharacter”. The main aim of the model was to reduce the variables able to define soils and their relationships with the environment through the following quali-quantitative approach: i) definition of a fair number of qualitative characters; and ii) development of an analytic function, defined as “Land Relevance of the Factor”

    New data on distribution of amphibians and reptiles in the Aral Sea Basin and surrounding areas of Kazakhstan. Part I. The Green Toads of Bufo viridis complex (Amphibia: Anura)

    Get PDF
    First the data on distribution of the toads of Bufo viridis complex are presented for Aral Sea Basin and surrounding areas of Southern and Western Kazakhstan. Karyological analysis revealed a presence of diploid toad populations in the valley of the middle and low flows of Syr-Darya River; in the northern coast of Aral Sea and the desert areas between the last and Irgyz-Turgay Basin; in the northern part of Karatau Range. The only tetraploid population was discovered in the central part of Karatau Range

    Lizards as model organisms of sex chromosome evolution: What we really know from a systematic distribution of available data?

    Get PDF
    Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach

    Étude de l'enseignement et de l'apprentissage des formes indéterminées

    Get PDF
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    I simboli dell'Arabia meridionale pre-islamica

    Get PDF
    Raccolta e analisi dei simboli presenti sui testi epigrafici dell'Arabia meridionale pre-islamica, con particolare attenzione all'evoluzione grafica del segno e alla comprensione del significato in essi racchiuso in riferimento all'iscrizione e al contesto di rinvenimento

    First Insights on the Karyotype Diversification of the Endemic Malagasy Leaf-Toed Geckos (Squamata: Gekkonidae: Uroplatus)

    Get PDF
    We provide here the first karyotype description of eight Uroplatus species and a characterization of their chromosomal diversity. We performed a molecular taxonomic assessment of several Uroplatus samples using the mitochondrial 12S marker and a comparative cytogenetic analysis with standard karyotyping, silver staining (Ag-NOR) and sequential C-banding + Giemsa, +Chromomycin A3 (CMA3), +4',6-diamidino-2-phenylindole (DAPI). We found chromosomal variability in terms of chromosome number (2n = 34-38), heterochromatin composition and number and localization of loci or Nucleolar Organizer Regions (NORs) (alternatively on the 2nd, 6th, 10th or 16th pair). Chromosome morphology is almost constant, with karyotypes composed of acrocentric chromosomes, gradually decreasing in length. C-banding evidenced a general low content of heterochromatin, mostly localized on pericentromeric and telomeric regions. Centromeric bands varied among the species studied, resulting in CMA3 positive and DAPI negative or positive to both fluorochromes. We also provide evidence of a first putative heteromorphic sex chromosome system in the genus. In fact, in U. alluaudi the 10th pair was highly heteromorphic, with a metacentric, largely heterochromatic W chromosome, which was much bigger than the Z. We propose an evolutionary scenario of chromosome reduction from 2n = 38 to 2n = 34, by means of translocations of microchromosomes on larger chromosomes (often involving the NOR-bearing microchromosomes). Adding our data to those available from the literature, we show that similar processes characterized the evolutionary radiation of a larger gecko clade. Finally, we hypothesize that sex chromosome diversification occurred independently in different genera

    Zeolitized tuffs in pedotechnique for quarry restoration: evaluation of phytonutritional efficiency in ^AUP model horizons

    Get PDF
    A study was started aiming at assessing the suitability of zeolitized tuff as optimal mineral Human Transported Materials (HTMs) in pedotechnologies for quarry restoration

    Evolutionary and Genomic Diversity of True Polyploidy in Tetrapods

    Get PDF
    : True polyploid organisms have more than two chromosome sets in their somatic and germline cells. Polyploidy is a major evolutionary force and has played a significant role in the early genomic evolution of plants, different invertebrate taxa, chordates, and teleosts. However, the contribution of polyploidy to the generation of new genomic, ecological, and species diversity in tetrapods has traditionally been underestimated. Indeed, polyploidy represents an important pathway of genomic evolution, occurring in most higher-taxa tetrapods and displaying a variety of different forms, genomic configurations, and biological implications. Herein, we report and discuss the available information on the different origins and evolutionary and ecological significance of true polyploidy in tetrapods. Among the main tetrapod lineages, modern amphibians have an unparalleled diversity of polyploids and, until recently, they were considered to be the only vertebrates with closely related diploid and polyploid bisexual species or populations. In reptiles, polyploidy was thought to be restricted to squamates and associated with parthenogenesis. In birds and mammals, true polyploidy has generally been considered absent (non-tolerated). These views are being changed due to an accumulation of new data, and the impact as well as the different evolutionary and ecological implications of polyploidy in tetrapods, deserve a broader evaluation

    Comparative cytogenetics of Hemorrhois hippocrepis and Malpolon monspessulanus highlights divergent karyotypes in Colubridae and Psammophiidae (Squamata: Serpentes)

    Get PDF
    Despite the growing interest in the evolutionary cytogenetics of squamates, chromosomal data are lacking for most taxa. We performed a preliminary molecular taxonomic analysis and a comparative cytogenetic study on Hemorrhois hippocrepis and Malpolon monspessulanus. We used a combination of standard karyotyping, chromomycin A3/Methyl green staining, C-banding, Ag-NOR staining and NOR-FISH to provide the first karyotype description of H. hippocrepis and a re-description of the karyotype of M. monspessulanus, including chromosome markers, heterochromatin patterns and sex chromosome systems. Our results show that H. hippocrepis has 2 n = 36 chromosomes, with 16 macro- and 20 microchromosomes and NORs on the 6th pair. The 4th pair represents homomorphic (metacentric) ZW sex chromosomes, but the W chromosome is completely heterochromatic. Malpolon monspessulanus has 2 n = 44 chromosomes, with 20 macro- and 24 microchromosomes, NORs on the 6th telocentric pair. The 4th pair represents the sex chromosomes (ZZ/ZW), with a W chromosome smaller than the Z and completely heterochromatic. Comparing our cytogenetic data to those available from the literature, we note the occurrence and distribution of primitive and derived chromosomal characteristics and discuss the chromosome diversification in two snake clades belonging to Colubridae and Psammophiidae, respectively. We highlight that these two families followed different chromosome diversification pathways, characterised by a highly conserved karyotype structure in Colubridae and a higher chromosome variability in Psammophiidae, mostly driven by a progressive reduction of the chromosome number by means of chromosome fusions. We also provide cytotaxonomic insights supporting the distinction between M. monspessulanus and M. insignitus
    • …
    corecore