60 research outputs found

    Hot fluids, burial metamorphism and thermal histories in the underthrust sediments at IODP 370 site C0023, Nankai Accretionary Complex

    Get PDF
    This research used samples and data provided by the International Ocean Discovery Program (IODP). The authors are grateful to the IODP and the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). We thank crew, drilling team, geologists and lab technicians on D/V Chikyu and the staff of the Kochi Institute for Core Sample Research for supporting operations. This work was supported by the ECORD research grant [2017 to MYT]; and the NERC grant [NE/P015182/1 2017 to SAB]. ZW acknowledges technical support provided by Colin Taylor at the University of Aberdeen. Petromod 2017 was provided by Schlumberger. VBH and KUH acknowledge funding from the Deutsche Forschungsgemeinschaft through the Cluster of Excellence, The Ocean Floor – Earth’s Uncharted Interface“ and Project Grant HE8034/1-1 2019. This is a contribution to the Deep Carbon Observatory.Peer reviewedPublisher PD

    Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides

    Get PDF
    Using strain to control oxynitride properties. 京都大学プレスリリース. 2020-12-01.原子空孔の配列を制御する新手法の発見. 京都大学プレスリリース. 2020-12-02.Perovskite oxides can host various anion-vacancy orders, which greatly change their properties, but the order pattern is still difficult to manipulate. Separately, lattice strain between thin film oxides and a substrate induces improved functions and novel states of matter, while little attention has been paid to changes in chemical composition. Here we combine these two aspects to achieve strain-induced creation and switching of anion-vacancy patterns in perovskite films. Epitaxial SrVO3 films are topochemically converted to anion-deficient oxynitrides by ammonia treatment, where the direction or periodicity of defect planes is altered depending on the substrate employed, unlike the known change in crystal orientation. First-principles calculations verified its biaxial strain effect. Like oxide heterostructures, the oxynitride has a superlattice of insulating and metallic blocks. Given the abundance of perovskite families, this study provides new opportunities to design superlattices by chemically modifying simple perovskite oxides with tunable anion-vacancy patterns through epitaxial lattice strain

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    Poster Session: Abstracts

    Get PDF
    The 3rd International Symposium on Carcinogenic Spiral & International Symposium on Tumor Biology in Kanazawa, [DATE]: January 24(Thu)-25(Fri),2013, [Place]:Kanazawa Excel Hotel Tpkyu, Kanazawa, Japan, [Organizers]:Infection/Inflammation-Assisted Acceleration of the Carcinogenic Spiral and its Alteration through Vector Conversion of the Host Response to Tumors / Scientific Research on Innovative Areas, a MEXT Grant-in Aid Projec

    A New Method for Quality Control of Geological Cores by X-Ray Computed Tomography: Application in IODP Expedition 370

    Get PDF
    ACKNOWLEDGMENTS This research used data provided by the International Ocean Discovery Program (IODP). We are grateful to the IODP and thank crew, drilling team, geologists and lab technicians on Chikyu and the staff of the Kochi Institute for Core Sample Research for supporting IODP 370-operations. We would like to thank Lucia Mancini for handling the editorial process and the three reviewers for submitting their helpful comments and improving the manuscript.Peer reviewedPublisher PD

    In-situ mechanical weakness of subducting sediments beneath a plate boundary décollement in the Nankai Trough

    Get PDF
    © 2018, The Author(s). The study investigates the in-situ strength of sediments across a plate boundary décollement using drilling parameters recorded when a 1180-m-deep borehole was established during International Ocean Discovery Program (IODP) Expedition 370, Temperature-Limit of the Deep Biosphere off Muroto (T-Limit). Information of the in-situ strength of the shallow portion in/around a plate boundary fault zone is critical for understanding the development of accretionary prisms and of the décollement itself. Studies using seismic reflection surveys and scientific ocean drillings have recently revealed the existence of high pore pressure zones around frontal accretionary prisms, which may reduce the effective strength of the sediments. A direct measurement of in-situ strength by experiments, however, has not been executed due to the difficulty in estimating in-situ stress conditions. In this study, we derived a depth profile for the in-situ strength of a frontal accretionary prism across a décollement from drilling parameters using the recently established equivalent strength (EST) method. At site C0023, the toe of the accretionary prism area off Cape Muroto, Japan, the EST gradually increases with depth but undergoes a sudden change at ~ 800 mbsf, corresponding to the top of the subducting sediment. At this depth, directly below the décollement zone, the EST decreases from ~ 10 to 2 MPa, with a change in the baseline. This mechanically weak zone in the subducting sediments extends over 250 m (~ 800–1050 mbsf), corresponding to the zone where the fluid influx was discovered, and high-fluid pressure was suggested by previous seismic imaging observations. Although the origin of the fluids or absolute values of the strength remain unclear, our investigations support previous studies suggesting that elevated pore pressure beneath the décollement weakens the subducting sediments. [Figure not available: see fulltext.]

    Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase

    No full text
    The FAD-dependent glucose dehydrogenase from Burkholderia cepacia (FADGDH) is a hetero-oligomeric enzyme that is capable of direct electron transfer (DET) with an electrode. The cytochrome c (cyt c) subunit, which possesses three hemes (heme 1, heme 2, and heme 3, from the N-terminal sequence), is known to enable DET; however, details of the electron transfer pathway remain unknown. A mutagenesis investigation of the heme axial ligands was carried out to elucidate the electron transfer pathway to the electron mediators and/or the electrode. The sixth axial ligand for each of the three heme irons, Met109, Met263, and Met386 were substituted with His. The catalytic activities of the wild-type (WT) and mutant enzymes were compared by investigating their dye-mediated dehydrogenase activities and their DET abilities toward the electrode. The results suggested that (1) heme 1 with Met109 as an axial ligand is mainly responsible for the electron transfer with electron acceptors in the solution, but not for the DET with the electrode; (2) heme 2 with Met263 is responsible for the DET-type reaction with the electrode; and (3) heme 3 with Met386 seemed to be the electron acceptor from the catalytic subunit. From these results, two electron transfer pathways were proposed depending on the electron acceptors. Electrons are transferred from the catalytic subunit to heme 3, then to heme 2, to heme 1 and, finally, to electron acceptors in solution. However, if the enzyme complex is immobilized on the electrode and is used as electron acceptors, electrons are passed to the electrode from heme 2

    Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder

    Get PDF
    【Background】 Bovine mastitis caused by Staphylococcus aureus (S. aureus) is extremely difficult to control and new methods for its prevention and management are required. Nasal vaccines may prevent initial bovine mastitis infection caused by S. aureus. However, limited information is available regarding induction of mucosal immune response through nasal immunization with antigen and its suppression of S. aureus multiplication during bovine mastitis. This study sought to investigate whether induction of immunoglobulin A (IgA) in milk by nasal immunization could suppress multiplication of S. aureus in the bovine udder.【Results】Nasal immunization with formalin-killed S. aureus conjugated with a cationic cholesteryl-group-bearing pullulan-nanogel was performed. Anti-S. aureus-specific IgA antibodies were significantly more abundant in the milk of immunized cows than in non-immunized animals (P < 0.05). S. aureus counts in the quarter were negative in both non-immunized and nasal-immunized cows 1 week after mock infusion. In S. aureus-infused quarters, S. aureus multiplication was significantly suppressed in immunized compared with non-immunized cows (P < 0.05). Furthermore, a significant negative correlation was found between S. aureus-specific IgA antibodies and S. aureus counts in infused quarters of both non-immunized and nasal-immunized cows (r = − 0.811, P < 0.01).【Conclusion】In conclusion, the present study demonstrates that S. aureus-specific IgA antibodies in milk successfully suppressed the multiplication of S. aureus in infected bovine udders. Although the exact mechanism explaining such suppressive effect remains to be elucidated, nasal vaccines that can induce humoral immunity may help prevent initial infection with S. aureus and the onset of bovine mastitis

    Change in N-Glycosylation of Plasma Proteins in Japanese Semisupercentenarians.

    No full text
    An N-glycomic analysis of plasma proteins was performed in Japanese semisupercentenarians (SSCs) (mean 106.7 years), aged controls (mean 71.6 years), and young controls (mean 30.2 years) by liquid chromatography/mass spectrometry (LC/MS) using a graphitized carbon column. Characteristic N-glycans in SSCs were discriminated using a multivariate analysis; orthogonal projections to latent structures (O-PLS). The results obtained showed that multi-branched and highly sialylated N-glycans as well as agalacto- and/or bisecting N-glycans were increased in SSCs, while biantennary N-glycans were decreased. Since multi-branched and highly sialylated N-glycans have been implicated in anti-inflammatory activities, these changes may play a role in the enhanced chronic inflammation observed in SSCs. The levels of inflammatory proteins, such as CRP, adiponectin, IL-6, and TNF-α, were elevated in SSCs. These results suggested that responses to inflammation may play an important role in extreme longevity and healthy aging in humans. This is the first study to show that the N-glycans of plasma proteins were associated with extreme longevity and healthy aging in humans
    corecore