11 research outputs found
Minocycline at 2 different dosages vs placebo for patients with mild alzheimer disease
Importance - There are no disease-modifying treatments for Alzheimer disease (AD), the most common cause of dementia. Minocycline is anti-inflammatory, protects against the toxic effects of β-amyloid in vitro and in animal models of AD, and is a credible repurposed treatment candidate.
Objective - To determine whether 24 months of minocycline treatment can modify cognitive and functional decline in patients with mild AD.
Design, Setting, and Participants Participants were recruited into a double-blind randomized clinical trial from May 23, 2014, to April 14, 2016, with 24 months of treatment and follow-up. This multicenter study in England and Scotland involved 32 National Health Service memory clinics within secondary specialist services for people with dementia. From 886 screened patients, 554 patients with a diagnosis of mild AD (Standardised Mini-Mental State Examination [sMMSE] score ≥24) were randomized.
Interventions - Participants were randomly allocated 1:1:1 in a semifactorial design to receive minocycline (400 mg/d or 200 mg/d) or placebo for 24 months.
Main Outcomes and Measures - Primary outcome measures were decrease in sMMSE score and Bristol Activities of Daily Living Scale (BADLS), analyzed by intention-to-treat repeated-measures regression.
Results - Of 544 eligible participants (241 women and 303 men), the mean (SD) age was 74.3 (8.2) years, and the mean (SD) sMMSE score was 26.4 (1.9). Fewer participants completed 400-mg minocycline hydrochloride treatment (28.8% [53 of 184]) than 200-mg minocycline treatment (61.9% [112 of 181]) or placebo (63.7% [114 of 179]; P < .001), mainly because of gastrointestinal symptoms (42 in the 400-mg group, 15 in the 200-mg group, and 10 in the placebo group; P < .001), dermatologic adverse effects (10 in the 400-mg group, 5 in the 200-mg group, and 1 in the placebo group; P = .02), and dizziness (14 in the 400-mg group, 3 in the 200-mg group, and 1 in the placebo group; P = .01). Assessment rates were lower in the 400-mg group: 68.4% (119 of 174 expected) for sMMSE at 24 months compared with 81.8% (144 of 176) for the 200-mg group and 83.8% (140 of 167) for the placebo group. Decrease in sMMSE scores over 24 months in the combined minocycline group was similar to that in the placebo group (4.1 vs 4.3 points). The combined minocycline group had mean sMMSE scores 0.1 points higher than the placebo group (95% CI, −1.1 to 1.2; P = .90). The decrease in mean sMMSE scores was less in the 400-mg group than in the 200-mg group (3.3 vs 4.7 points; treatment effect = 1.2; 95% CI, −0.1 to 2.5; P = .08). Worsening of BADLS scores over 24 months was similar in all groups: 5.7 in the 400-mg group, 6.6 in the 200-mg group, and 6.2 in the placebo groups (treatment effect for minocycline vs placebo = –0.53; 95% CI, −2.4 to 1.3; P = .57; treatment effect for 400 mg vs 200 mg of minocycline = –0.31; 95% CI, −0.2 to 1.8; P = .77). Results were similar in different patient subgroups and in sensitivity analyses adjusting for missing data.
Conclusions and Relevance - Minocycline did not delay the progress of cognitive or functional impairment in people with mild AD during a 2-year period. This study also found that 400 mg of minocycline is poorly tolerated in this population
Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE) : a prospective, randomised, open-label, non-inferiority trial
Background Coronary artery bypass grafting (CABG) is the standard treatment for revascularisation in patients with left main coronary artery disease, but use of percutaneous coronary intervention (PCI) for this indication is increasing. We aimed to compare PCI and CABG for treatment of left main coronary artery disease. Methods In this prospective, randomised, open-label, non-inferiority trial, patients with left main coronary artery disease were enrolled in 36 centres in northern Europe and randomised 1: 1 to treatment with PCI or CABG. Eligible patients had stable angina pectoris, unstable angina pectoris, or non-ST-elevation myocardial infarction. Exclusion criteria were ST-elevation myocardial infarction within 24 h, being considered too high risk for CABG or PCI, or expected survival of less than 1 year. The primary endpoint was major adverse cardiac or cerebrovascular events (MACCE), a composite of all-cause mortality, non-procedural myocardial infarction, any repeat coronary revascularisation, and stroke. Non-inferiority of PCI to CABG required the lower end of the 95% CI not to exceed a hazard ratio (HR) of 1 . 35 after up to 5 years of follow-up. The intention-to-treat principle was used in the analysis if not specified otherwise. This trial is registered with ClinicalTrials.gov identifier, number NCT01496651. Findings Between Dec 9, 2008, and Jan 21, 2015, 1201 patients were randomly assigned, 598 to PCI and 603 to CABG, and 592 in each group entered analysis by intention to treat. Kaplan-Meier 5 year estimates of MACCE were 29% for PCI (121 events) and 19% for CABG (81 events), HR 1 . 48 (95% CI 1 . 11-1 . 96), exceeding the limit for non-inferiority, and CABG was significantly better than PCI (p=0 . 0066). As-treated estimates were 28% versus 19% (1 . 55, 1 . 18-2 . 04, p= 0 . 0015). Comparing PCI with CABG, 5 year estimates were 12% versus 9% (1 . 07, 0 . 67-1 . 72, p= 0 . 77) for all-cause mortality, 7% versus 2% (2 . 88, 1 . 40-5 . 90, p= 0 . 0040) for non-procedural myocardial infarction, 16% versus 10% (1 . 50, 1 . 04-2 . 17, p= 0 . 032) for any revascularisation, and 5% versus 2% (2 . 25, 0 . 93-5 . 48, p= 0 . 073) for stroke. Interpretation The findings of this study suggest that CABG might be better than PCI for treatment of left main stem coronary artery disease.Peer reviewe