36 research outputs found

    Reducing Global Warming: The Potential of Organic Agriculture

    Get PDF
    Climate change mitigation is urgent, and adaptation to climate change is crucial, particularly in agriculture, where food security is at stake. Agriculture, currently responsible for 20-30% of global greenhouse gas emissions (counting direct and indirect agricultural emissions), can however contribute to both climate change mitigation and adaptation. The main mitigation potential lies in the capacity of agricultural soils to sequester CO2 through building organic matter. This potential can be realized by employing sustainable agricultural practices, such as those commonly found within organic farming systems. Examples of these practices are the use of organic fertilizers and crop rotations including legume leys and cover crops. Mitigation is also achieved in organic agriculture through the avoidance of open biomass burning, and the avoidance of synthetic fertilizers, the production of which causes emissions from fossil fuel use. , Andreas Gattinger1, Nic Lampkin3, Urs Niggli1 Common organic practices also contribute to adaptation. Building soil organic matter increases water retention capacity, and creates more stabile, fertile soils, thus reducing vulnerability to drought, extreme precipitation events, floods and water logging. Adaptation is further supported by increased agro-ecosystem diversity of organic farms, based on management decisions, reduced nitrogen inputs and the absence of chemical pesticides. The high diversity together with the lower input costs of organic agriculture is key to reducing production risks associated with extreme weather events. All these advantageous practices are not exclusive to organic agriculture. However, they are core parts of the organic production system, in contrast to most non-organic agriculture, where they play a minor role only. Mitigation in agriculture is however not restricted to the agricultural sector alone. Consumer preferences for products from conventional or organic farms, seasonal and local production, pest and disease resistant varieties, etc. strongly influence agricultural production systems, and thus the overall mitigation potential of agriculture. Even more influential are meat consumption and food wastage. Any discussion on mitigation of climate change in agriculture thus needs to address the entire food chain, and to be linked to general sustainable development strategies. The main challenges to dealing appropriately with the climate change mitigation and adaptation potential of organic agriculture, and agriculture in general, stem from a) insufficient understanding of some of the basic processes, such as the interaction of N2O emissions and soil carbon sequestration, contributions of roots to soil carbon sequestration, and the life-cycle emissions of organic fertilizers, such as compost; b) lack of procedures for emissions accounting which adequately represent agricultural production systems with multiple and diverse outputs, which also encompass ecosystem services; c) the problem to identify and design adequate policy frameworks for supporting mitigation and adaptation in agriculture, i.e. such that do not put systemic approaches at a disadvantage due to difficulties in the quantification of emissions, and in their allocation to single products; d) the necessity to assure that the current focus on mitigation does not lead to neglect of other factors influencing the sustainability of agriculture, such as pesticide loads, eutrophication, acidification or soil erosion; and e) the open questions, how to address consumer behaviour and how to further changes in consumption patterns, in order to utilize their mitigation potential

    Functional MRI correlates of emotion regulation in major depressive disorder related to depressive disease load measured over nine years

    Get PDF
    Major Depressive Disorder (MDD) often is a recurrent and chronic disorder. We investigated the neurocognitive underpinnings of the incremental risk for poor disease course by exploring relations between enduring depression and brain functioning during regulation of negative and positive emotions using cognitive reappraisal. We used fMRI-data from the longitudinal Netherlands Study of Depression and Anxiety acquired during an emotion regulation task in 77 individuals with MDD. Task-related brain activity was related to disease load, calculated from presence and severity of depression in the preceding nine years. Additionally, we explored task related brain-connectivity. Brain functioning in individuals with MDD was further compared to 35 controls to explore overlap between load-effects and general effects related to MDD history/presence. Disease load was not associated with changes in affect or with brain activity, but with connectivity between areas essential for processing, integrating and regulating emotional information during downregulation of negative emotions. Results did not overlap with general MDD-effects. Instead, MDD was generally associated with lower parietal activity during downregulation of negative emotions. During upregulation of positive emotions, disease load was related to connectivity between limbic regions (although driven by symptomatic state), and connectivity between frontal, insular and thalamic regions was lower in MDD (vs controls). Results suggest that previous depressive load relates to brain connectivity in relevant networks during downregulation of negative emotions. These abnormalities do not overlap with disease-general abnormalities and could foster an incremental vulnerability to recurrence or chronicity of MDD. Therefore, optimizing emotion regulation is a promising therapeutic target for improving long-term MDD course.</p

    Functional MRI correlates of emotion regulation in major depressive disorder related to depressive disease load measured over nine years

    Get PDF
    Major Depressive Disorder (MDD) often is a recurrent and chronic disorder. We investigated the neurocognitive underpinnings of the incremental risk for poor disease course by exploring relations between enduring depression and brain functioning during regulation of negative and positive emotions using cognitive reappraisal. We used fMRI-data from the longitudinal Netherlands Study of Depression and Anxiety acquired during an emotion regulation task in 77 individuals with MDD. Task-related brain activity was related to disease load, calculated from presence and severity of depression in the preceding nine years. Additionally, we explored task related brain-connectivity. Brain functioning in individuals with MDD was further compared to 35 controls to explore overlap between load-effects and general effects related to MDD history/presence. Disease load was not associated with changes in affect or with brain activity, but with connectivity between areas essential for processing, integrating and regulating emotional information during downregulation of negative emotions. Results did not overlap with general MDD-effects. Instead, MDD was generally associated with lower parietal activity during downregulation of negative emotions. During upregulation of positive emotions, disease load was related to connectivity between limbic regions (although driven by symptomatic state), and connectivity between frontal, insular and thalamic regions was lower in MDD (vs controls). Results suggest that previous depressive load relates to brain connectivity in relevant networks during downregulation of negative emotions. These abnormalities do not overlap with disease-general abnormalities and could foster an incremental vulnerability to recurrence or chronicity of MDD. Therefore, optimizing emotion regulation is a promising therapeutic target for improving long-term MDD course.</p

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    The 'others' amongst 'them' – selection categories in European resettlement and humanitarian admission programmes

    Get PDF
    The chapter looks at categorisations as a form of ‘othering’ in the context of European refugee resettlement. Selection categories in resettlement provide insights into states’ preferences, when given the possibility to effectively select refugees before they present themselves at the border. As such, categorisations in such programmes are ways of othering within the group of ‘others’, excluding but also including according to three logics: humanitarian, security and assimilability. The chapter provides a panoramic view of official selection categories of the United Nations High Commissioner for Refugees (UNHCR), European Member States, and the European Union (EU). The analysis shows that, while resettlement is framed as a humanitarian policy for the ‘most vulnerable’, some European states’ programmes and recent EU propositions indicate that besides a humanitarian logic, security and assimilability logics of ‘othering’ also draw the boundaries of access to this privileged form of refugee protection
    corecore