52 research outputs found
A non-Gaussian landscape
Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f_NL|>> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |fNL^{obs.}|<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations
Tight-binding parameters for charge transfer along DNA
We systematically examine all the tight-binding parameters pertinent to
charge transfer along DNA. The molecular structure of the four DNA bases
(adenine, thymine, cytosine, and guanine) is investigated by using the linear
combination of atomic orbitals method with a recently introduced
parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are
discussed and then used for calculating the corresponding wavefunctions of the
two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO
and LUMO energies of the bases are in good agreement with available
experimental values. Our results are then used for estimating the complete set
of charge transfer parameters between neighboring bases and also between
successive base-pairs, considering all possible combinations between them, for
both electrons and holes. The calculated microscopic quantities can be used in
mesoscopic theoretical models of electron or hole transfer along the DNA double
helix, as they provide the necessary parameters for a tight-binding
phenomenological description based on the molecular overlap. We find that
usually the hopping parameters for holes are higher in magnitude compared to
the ones for electrons, which probably indicates that hole transport along DNA
is more favorable than electron transport. Our findings are also compared with
existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table
On Soft Limits of Inflationary Correlation Functions
Soft limits of inflationary correlation functions are both observationally
relevant and theoretically robust. Various theorems can be proven about them
that are insensitive to detailed model-building assumptions. In this paper, we
re-derive several of these theorems in a universal way. Our method makes
manifest why soft limits are such an interesting probe of the spectrum of
additional light fields during inflation. We illustrate these abstract results
with a detailed case study of the soft limits of quasi-single-field inflation.Comment: 26 pages, 5 figures; V2: references added + pedagogical improvements
of Sec. 2 and App.
The matter power spectrum in redshift space using effective field theory
The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k <= 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time for the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of the baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k <~ 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the ell=0 mode up to ~ 5% and for the ell = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the ell = 0 mode gives a firm upper limit of k ~ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the ell = 0 mode, but can induce deviations as large as 2% for the ell = 2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms
Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
The separate universe approach to soft limits
We develop a formalism for calculating soft limits of -point inflationary
correlation functions using separate universe techniques. Our method naturally
allows for multiple fields and leads to an elegant diagrammatic approach. As an
application we focus on the trispectrum produced by inflation with multiple
light fields, giving explicit formulae for all possible single- and double-soft
limits. We also investigate consistency relations and present an infinite tower
of inequalities between soft correlation functions which generalise the
Suyama-Yamaguchi inequality.Comment: 28 pages, 7 figures. This is an author-created, un-copyedited version
of an article published in JCAP. IOP Publishing Ltd is not responsible for
any errors or omissions in this version of the manuscript or any version
derived from it. The Version of Record is available online at the DOI below.
v3: Updated to match version published in JCA
Readout technologies for directional WIMP Dark Matter detection
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging
strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim
to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the
readout technologies. In this paper we review the various detector readout technologies used by directional detectors.
In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects
for these technologies
Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
- …