330 research outputs found

    Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing

    Get PDF
    Exosomes are nanosized (30–100 nm) membrane vesicles secreted by most cell types. Exosomes have been found to contain various RNA species including miRNA, mRNA and long non-protein coding RNAs. A number of cancer cells produce elevated levels of exosomes. Because exosomes have been isolated from most body fluids they may provide a source for non-invasive cancer diagnostics. Transcriptome profiling that uses deep-sequencing technologies (RNA-Seq) offers enormous amount of data that can be used for biomarkers discovery, however, in case of exosomes this approach was applied only for the analysis of small RNAs. In this study, we utilized RNA-Seq technology to analyze RNAs present in microvesicles secreted by human breast cancer cell lines.Exosomes were isolated from the media conditioned by two human breast cancer cell lines, MDA-MB-231 and MDA-MB-436. Exosomal RNA was profiled using the Ion Torrent semiconductor chip-based technology. Exosomes were found to contain various classes of RNA with the major class represented by fragmented ribosomal RNA (rRNA), in particular 28S and 18S rRNA subunits. Analysis of exosomal RNA content revealed that it reflects RNA content of the donor cells. Although exosomes produced by the two cancer cell lines shared most of the RNA species, there was a number of non-coding transcripts unique to MDA-MB-231 and MDA-MB-436 cells. This suggests that RNA analysis might distinguish exosomes produced by low metastatic breast cancer cell line (MDA-MB-436) from that produced by highly metastatic breast cancer cell line (MDA-MB-231). The analysis of gene ontologies (GOs) associated with the most abundant transcripts present in exosomes revealed significant enrichment in genes encoding proteins involved in translation and rRNA and ncRNA processing. These GO terms indicate most expressed genes for both, cellular and exosomal RNA.For the first time, using RNA-seq, we examined the transcriptomes of exosomes secreted by human breast cancer cells. We found that most abundant exosomal RNA species are the fragments of 28S and 18S rRNA subunits. This limits the number of reads from other RNAs. To increase the number of detectable transcripts and improve the accuracy of their expression level the protocols allowing depletion of fragmented rRNA should be utilized in the future RNA-seq analyses on exosomes. Present data revealed that exosomal transcripts are representative of their cells of origin and thus could form basis for detection of tumor specific markers

    Syndecan-4 phosphorylation is a control point for integrin recycling

    Get PDF
    Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration

    Peripheral blood biomarkers in multiple sclerosis.

    Get PDF
    Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heteroge-neity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpre-dictable response to therapies. The major focus of the research on MS is the identification of biomarkers inbiologicalfluids, such as cerebrospinalfluid or blood, to guide patient management reliably. Because of the diffi-culties in obtaining spinalfluid samples and the necessity for lumbar puncture to make a diagnosis has reduced,the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However,currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkerscould radically alter the management of MS at critical phases of the disease spectrum, allowing for interventionstrategies that may prevent evolution to long-term neurological disability. This article provides an overview ofthis researchfield and focuses on recent advances in blood-based biomarker researc

    GEP100/Arf6 Is Required for Epidermal Growth Factor-Induced ERK/Rac1 Signaling and Cell Migration in Human Hepatoma HepG2 Cells

    Get PDF
    BACKGROUND: Epidermal growth factor (EGF) signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS: We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH) domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N) also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE: Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis

    Tumor-Derived Microvesicles Induce Proangiogenic Phenotype in Endothelial Cells via Endocytosis

    Get PDF
    Background: Increasing evidence indicates that tumor endothelial cells (TEC) differ from normal endothelial cells (NEC). Our previous reports also showed that TEC were different from NEC. For example, TEC have chromosomal abnormality and proangiogenic properties such as high motility and proliferative activity. However, the mechanism by which TEC acquire a specific character remains unclear. To investigate this mechanism, we focused on tumor-derived microvesicles (TMV). Recent studies have shown that TMV contain numerous types of bioactive molecules and affect normal stromal cells in the tumor microenvironment. However, most of the functional mechanisms of TMV remain unclear. Methodology/Principal Findings: Here we showed that TMV isolated from tumor cells were taken up by NEC through endocytosis. In addition, we found that TMV promoted random motility and tube formation through the activation of the phosphoinositide 3-kinase/Akt pathway in NEC. Moreover, the effects induced by TMV were inhibited by the endocytosis inhibitor dynasore. Our results indicate that TMV could confer proangiogenic properties to NEC partly via endocytosis. Conclusion: We for the first time showed that endocytosis of TMV contributes to tumor angiogenesis. These findings offer new insights into cancer therapies and the crosstalk between tumor and endothelial cells mediated by TMV in the tumor microenvironment

    Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets.

    Get PDF
    Platelets protect the vascular system during damage or inflammation, but platelet activation can result in pathological thrombosis. Activated platelets release a variety of extracellular vesicles (EVs). EVs shed from the plasma membrane often expose phosphatidylserine (PS). These EVs are pro-thrombotic and increased in number in many cardiovascular and metabolic diseases. The mechanisms by which PS-exposing EVs are shed from activated platelets are not well characterised. Cholesterol-rich lipid rafts provide a platform for coordinating signalling through receptors and Ca2+ channels in platelets. We show that cholesterol depletion with methyl-β-cyclodextrin or sequestration with filipin prevented the Ca2+-triggered release of PS-exposing EVs. Although calpain activity was required for release of PS-exposing, calpain-dependent cleavage of talin was not affected by cholesterol depletion. P2Y12 and TPα, receptors for ADP and thromboxane A2, respectively, have been reported to be in platelet lipid rafts. However, the P2Y12 antagonist, AR-C69931MX, or the cyclooxygenase inhibitor, aspirin, had no effect on A23187-induced release of PS-exposing EVs. Together, these data show that lipid rafts are required for release of PS-exposing EVs from platelets.Isaac Newton Trust/ Wellcome Trust ISSF/University of Cambridge Joint Research Grant British Heart Foundation grant SP/15/7/3156

    Development of circulatory microRNAs as markers of organ injury and mediators of inter-organ signalling

    Get PDF
    Plasma contains small, non-protein coding RNA species, microRNAs (miRNAs). Circulating miRNAs originate from tissues throughout the body and circulate in the blood bound to proteins or encapsulated in extracellular vesicles (EVs). The pattern of circulating miRNAs changes in different pathological states, leading to the hypothesis that they could act as biomarkers or mediators of inter-organ signalling. Acute kidney injury (AKI) is associated with high morbidity worldwide. Recent work has highlighted a potential role for EV signalling in the delivery of functional exogenous miRNA into kidney cells, which may contribute to the pathogenesis of AKI. The studies described in this thesis investigate the effects of circulating miRNAs on renal proximal tubular (PT) cells. Utilising next generation sequencing technology, circulating miRNA profiles were demonstrated to change significantly following myocardial injury. These findings were translated from humans into a mouse model of myocardial injury. Investigation of EV cell signalling, using flow cytometry and nanoparticle tracking analysis, demonstrated that PT cell EV uptake was not affected by known physiological agonists. By contrast, EV release from PT cells was regulated by purinergic P2Y1 and dopamine D1 receptors. Toxic cisplatin injury of PT cells resulted in increased EV release and reduced EV uptake in a dose-dependent manner. Cisplatin toxicity in PT cells was unaffected by EVs from mice with myocardial injury, but toxicity was reduced by EVs from mice with drug-induced liver injury (DILI). Circulating EVs from mice with DILI transferred the liver specific miRNA, miR-122, into PT cells in both in vivo and in vitro models. The consequence of miR-122 transfer was modulation of downstream target genes including Foxo3 which has been implicated in cell injury by apoptosis. These findings therefore show that circulatory miRNA profiles change in different models of organ injury and suggest miRNAs can be transferred to PT cells in vivo and in vitro. The improved viability of injured PT cells following co-incubation with DILI EVs, and subsequent transcriptomic work, suggests this may be as a consequence of miRNA transfer. In conclusion, circulatory miRNAs may act as mediators of inter-organ signalling and could play a crucial role in the propagation of systemic illness

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy
    corecore