12 research outputs found
A Possible Role for Pyrophosphate in the Coordination of Cytosolic and Plastidial Carbon Metabolism within the Potato Tuber
Tuber Physiology and Properties of Starch from Tubers of Transgenic Potato Plants with Altered Plastidic Adenylate Transporter Activity
The Allosterically Unregulated Isoform of ADP-Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-Glucose Incorporated into Endosperm Starch
Inhibition of the Plastidic ATP/ADP Transporter Protein Primes Potato Tubers for Augmented Elicitation of Defense Responses and Enhances Their Resistance against Erwinia carotovora
Tubers of transgenic potato (Solanum tuberosum) plants with decreased activity of the plastidic ATP/ADP transporter AATP1 display reduced levels of starch, modified tuber morphology, and altered concentrations of primary metabolites. Here, we demonstrate that the spontaneous production of hydrogen peroxide, the endogenous content of salicylic acid, and the levels of mRNAs of various defense-related genes are similar in tuber discs of wild-type and AATP1(St) antisense plants. However, upon challenging the tissue with fungal elicitors or culture supernatants of the soft rot-causing pathogen Erwinia carotovora subsp. atroseptica, the AATP1(St) antisense tubers exhibit highly potentiated activation of defense responses when compared with wild-type tissue. The augmented defense responses comprise enhanced accumulation of transcripts of five defense-related genes (β-1,3-GLUCANASE B2 and A1, CHITINASE B3 and A2, and Phe AMMONIA-LYASE) and enhanced elicitation (up to 21-fold) of the early hydrogen peroxide burst. The potentiated activation of cellular defense responses in AATP1(St) antisense tubers is not accompanied by a precedent increase in endogenous salicylic acid levels, but is associated with a strongly enhanced resistance of the tissue to E. carotovora. From these results, we conclude that inhibition of primary metabolic reactions induces a primed state that sensitizes the potato tubers for improved elicitation of various cellular defense responses, which likely contribute to enhanced E. carotovora resistance
The Sucrose Analog Palatinose Leads to a Stimulation of Sucrose Degradation and Starch Synthesis When Supplied to Discs of Growing Potato Tubers
A Grapevine Gene Encoding a Guard Cell K(+) Channel Displays Developmental Regulation in the Grapevine Berry
SIRK is a K(+) channel identified in grapevine (Vitis vinifera), belonging to the so-called Shaker family. The highest sequence similarities it shares with the members of this family are found with channels of the KAT type, although SIRK displays a small ankyrin domain. This atypical feature provides a key to understand the evolution of the plant Shaker family. Expression in Xenopus laevis oocytes indicated that SIRK is an inwardly rectifying channel displaying functional properties very similar to those of KAT2. The activity of SIRK promoter region fused to the GUS reporter gene was analyzed in both grapevine and Arabidopsis. Like other KAT-like channels, SIRK is expressed in guard cells. In Arabidopsis, the construct is also expressed in xylem parenchyma. Semiquantitative reverse transcriptase-polymerase chain reaction experiments indicated that SIRK transcript was present at low levels in the berry, during the first stages of berry growth. After veraison, the period of berry development that corresponds to the inception of ripening and that is associated with large biochemical and structural modifications, such as evolution of stomata in nonfunctional lenticels and degeneration of xylem vasculature, the transcript was no longer detected. The whole set of data suggests that in the berries SIRK is expressed in guard cells and, possibly, in xylem tissues. The encoded channel polypeptide could therefore play a role in the regulation of transpiration and water fluxes in grapevine fruits
