626 research outputs found
Negative cognition, affect, metacognition and dimensions of paranoia in people at ultra-high risk of psychosis: a multi-level modelling analysis
Background: Paranoia is one of the commonest symptoms of psychosis but has rarely been studied in a population at risk of developing psychosis. Based on existing theoretical models, including the proposed distinction between ‘poor me’ and ‘bad me’ paranoia, we aimed to test specific predictions about associations between negative cognition, metacognitive beliefs and negative emotions and paranoid ideation and the belief that persecution is deserved (deservedness).
Method: We used data from 117 participants from the Early Detection and Intervention Evaluation for people at risk of psychosis (EDIE-2) trial of cognitive–behaviour therapy, comparing them with samples of psychiatric in-patients and healthy students from a previous study. Multi-level modelling was utilized to examine predictors of both paranoia and deservedness, with post-hoc planned comparisons conducted to test whether person-level predictor variables were associated differentially with paranoia or with deservedness.
Results: Our sample of at-risk mental state participants was not as paranoid, but reported higher levels of ‘bad-me’ deservedness, compared with psychiatric in-patients. We found several predictors of paranoia and deservedness. Negative beliefs about self were related to deservedness but not paranoia, whereas negative beliefs about others were positively related to paranoia but negatively with deservedness. Both depression and negative metacognitive beliefs about paranoid thinking were specifically related to paranoia but not deservedness.
Conclusions: This study provides evidence for the role of negative cognition, metacognition and negative affect in the development of paranoid beliefs, which has implications for psychological interventions and our understanding of psychosis
An Application of Feynman-Kleinert Approximants to the Massive Schwinger Model on a Lattice
A trial application of the method of Feynman-Kleinert approximants is made to
perturbation series arising in connection with the lattice Schwinger model. In
extrapolating the lattice strong-coupling series to the weak-coupling continuum
limit, the approximants do not converge well. In interpolating between the
continuum perturbation series at large fermion mass and small fermion mass,
however, the approximants do give good results. In the course of the
calculations, we picked up and rectified an error in an earlier derivation of
the continuum series coefficients.Comment: 16 pages, 4 figures, 5 table
The Breakdown of Topology at Small Scales
We discuss how a topology (the Zariski topology) on a space can appear to
break down at small distances due to D-brane decay. The mechanism proposed
coincides perfectly with the phase picture of Calabi-Yau moduli spaces. The
topology breaks down as one approaches non-geometric phases. This picture is
not without its limitations, which are also discussed.Comment: 12 pages, 2 figure
Are social phobia and paranoia related, and which comes first?
.001), also with a dose response, i.e. more PS symptoms yield more SPh symptoms. PS emerging after SPh was not significant. This study confirmed the association of SPh and PS in a general population. Possibly this is caused by shared underlying psychological and behavioural processes. There was some indication that paranoid ideation precedes the development of SPh, but this must be considered with caution. Clinical implications are discussed. Keywords: paranoid symptoms; social phobia; comorbidity; general population surve
Do paranoid delusions exist on a continuum with subclinical paranoia? A multi-method taxometric study
Background There is widespread interest in whether psychosis exists on a continuum with healthy functioning. Previous research has implied that paranoia, a common symptom of psychosis, exists on a continuum but this has not been investigated using samples including both patients and non-patients and up-to-date taxometric methods. Aim To assess the latent structure of paranoia in a diverse sample using taxometric methods. Method We obtained data from 2836 participants, including the general population as well as at-risk mental state and psychotic patients using the P-scale of the Paranoia and Deservedness Scale. Data were analysed using three taxometric procedures, MAMBAC, MAXEIG and L-MODE (Ruscio, 2016), and two sets of paranoia indicators (subscales and selected items from the P scale), including and excluding the patient groups. Results Eleven of the twelve analyses supported a dimensional model. Using the full sample and subscales as indicators, the MAMBAC analysis was ambiguous. Overall, the findings converged on a dimensional latent structure. Conclusions A dimensional latent structure of paranoia implies that the processes involved in sub-clinical paranoia may be similar to those in clinical paranoia
Topological String Amplitudes, Complete Intersection Calabi-Yau Spaces and Threshold Corrections
We present the most complete list of mirror pairs of Calabi-Yau complete
intersections in toric ambient varieties and develop the methods to solve the
topological string and to calculate higher genus amplitudes on these compact
Calabi-Yau spaces. These symplectic invariants are used to remove redundancies
in examples. The construction of the B-model propagators leads to compatibility
conditions, which constrain multi-parameter mirror maps. For K3 fibered
Calabi-Yau spaces without reducible fibers we find closed formulas for all
genus contributions in the fiber direction from the geometry of the fibration.
If the heterotic dual to this geometry is known, the higher genus invariants
can be identified with the degeneracies of BPS states contributing to
gravitational threshold corrections and all genus checks on string duality in
the perturbative regime are accomplished. We find, however, that the BPS
degeneracies do not uniquely fix the non-perturbative completion of the
heterotic string. For these geometries we can write the topological partition
function in terms of the Donaldson-Thomas invariants and we perform a
non-trivial check of S-duality in topological strings. We further investigate
transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2
quotients that lead to a new class of heterotic duals.Comment: 117 pages, 1 Postscript figur
C^2/Z_n Fractional branes and Monodromy
We construct geometric representatives for the C^2/Z_n fractional branes in
terms of branes wrapping certain exceptional cycles of the resolution. In the
process we use large radius and conifold-type monodromies, and also check some
of the orbifold quantum symmetries. We find the explicit Seiberg-duality which
connects our fractional branes to the ones given by the McKay correspondence.
We also comment on the Harvey-Moore BPS algebras.Comment: 34 pages, v1 identical to v2, v3: typos fixed, discussion of
Harvey-Moore BPS algebras update
The relationship between the perception of distributed leadership in secondary schools and teachers' and teacher leaders' job satisfaction and organizational commitment
This study investigates the relation between distributed leadership, the cohesion of the leadership team, participative decision-making, context variables, and the organizational commitment and job satisfaction of teachers and teacher leaders. A questionnaire was administered to teachers and teacher leaders (n=1770) from 46 large secondary schools. Multiple regression analyses and path analyses revealed that the study variables explained significant variance in organizational commitment. The degree of explained variance for job satisfaction was considerably lower compared to organizational commitment. Most striking was that the cohesion of the leadership team and the amount of leadership support was strongly related to organizational commitment, and indirectly to job satisfaction. Decentralization of leadership functions was weakly related to organizational commitment and job satisfaction
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
- …
