595 research outputs found

    Non-Perturbative String Equations for Type 0A

    Full text link
    Well-defined non-perturbative formulations of the physics of string theories, sometimes with D-branes present, were identified over a decade ago, from a careful study of double scaled matrix models. Following recent work which recasts some of those old results in the context of type 0 string theory, a study is made of a much larger family of models, which are proposed as type 0A models of the entire superconformal minimal series coupled to gravity. This gives many further examples of important physical phenomena, including non-perturbative descriptions of transitions between D-branes and fluxes, tachyon condensation, and holography. In particular, features of a large family of non-perturbatively stable string equations are studied, and results are extracted which pertain to type 0A string theory, with D-branes and fluxes, in this large class of backgrounds. For the entire construction to work, large parts of the spectrum of the supergravitationally dressed superconformal minimal models and that of the gravitationally dressed bosonic conformal minimal models must coincide, and it is shown how this happens. The example of the super-dressed tricritical Ising model is studied in some detail.Comment: 29 pages LaTe

    Tachyon Condensation, Open-Closed Duality, Resolvents, and Minimal Bosonic and Type 0 Strings

    Full text link
    Type 0A string theory in the (2,4k) superconformal minimal model backgrounds and the bosonic string in the (2,2k-1) conformal minimal models, while perturbatively identical in some regimes, may be distinguished non-perturbatively using double scaled matrix models. The resolvent of an associated Schrodinger operator plays three very important interconnected roles, which we explore perturbatively and non-perturbatively. On one hand, it acts as a source for placing D-branes and fluxes into the background, while on the other, it acts as a probe of the background, its first integral yielding the effective force on a scaled eigenvalue. We study this probe at disc, torus and annulus order in perturbation theory, in order to characterize the effects of D-branes and fluxes on the matrix eigenvalues. On a third hand, the integrated resolvent forms a representation of a twisted boson in an associated conformal field theory. The entire content of the closed string theory can be expressed in terms of Virasoro constraints on the partition function, which is realized as wavefunction in a coherent state of the boson. Remarkably, the D-brane or flux background is simply prepared by acting with a vertex operator of the twisted boson. This generates a number of sharp examples of open-closed duality, both old and new. We discuss whether the twisted boson conformal field theory can usefully be thought of as another holographic dual of the non-critical string theory.Comment: 37 pages, some figures, LaTe

    A recommender system for process discovery

    Get PDF
    Over the last decade, several algorithms for process discovery and process conformance have been proposed. Still, it is well-accepted that there is no dominant algorithm in any of these two disciplines, and then it is often difficult to apply them successfully. Most of these algorithms need a close-to expert knowledge in order to be applied satisfactorily. In this paper, we present a recommender system that uses portfolio-based algorithm selection strategies to face the following problems: to find the best discovery algorithm for the data at hand, and to allow bridging the gap between general users and process mining algorithms. Experiments performed with the developed tool witness the usefulness of the approach for a variety of instances.Peer ReviewedPostprint (author’s final draft

    Evaluation of some important physicochemical properties of starch free grewia gum

    Get PDF
    Gums obtained by extraction from the inner bark of stems can be found in association with starch, which must be digested in order to obtain a refined polysaccharide isolate. In the present study, grewia gum obtained from the inner bark of the stems of Grewia mollis was shown to co-exist with starch and the effect of starch digestion on the physicochemical properties of the resultant polysaccharide was evaluated. The gum was extracted by maceration of the inner bark in deionized water and isolated by a combination of filtration, centrifugation and finally precipitation with absolute ethanol to produce the crude grewia gum extract (GG). The presence and content of starch in the gum sample was determined followed by enzymatic digestion of the starch using α-amylase (Termamyl 120L) to give a starch-free extract (GGDS). Physicochemical properties of the extracts such as total carbohydrates, total protein, differential sugar composition, NMR, intrinsic viscosity and rheological behaviour of the samples were evaluated. The GG extract had total carbohydrate content of ∼ 60 % out of which 11.8 % was starch, and a protein content of 2.3 %. Samples also contained galacturonic and glucuronic acid which were highly acetylated. Both samples had a higher proportion of galacturonic acid than glucuronic acid and contained rhamnose, arabinose, galactose, glucose and xylose as neutral sugars in varying proportions. Rheological measurements on 2 %w/w dispersions of the extracts show minor differences between both the original extract and the de-starched material but were influenced by changes in pH

    Domain Growth and Finite-Size-Scaling in the Kinetic Ising Model

    Full text link
    This paper describes the application of finite-size scaling concepts to domain growth in systems with a non-conserved order parameter. A finite-size scaling ansatz for the time-dependent order parameter distribution function is proposed, and tested with extensive Monte-Carlo simulations of domain growth in the 2-D spin-flip kinetic Ising model. The scaling properties of the distribution functions serve to elucidate the configurational self-similarity that underlies the dynamic scaling picture. Moreover, it is demonstrated that the application of finite-size-scaling techniques facilitates the accurate determination of the bulk growth exponent even in the presence of strong finite-size effects, the scale and character of which are graphically exposed by the order parameter distribution function. In addition it is found that one commonly used measure of domain size--the scaled second moment of the magnetisation distribution--belies the full extent of these finite-size effects.Comment: 13 pages, Latex. Figures available on request. Rep #9401

    Theorising Disability: Beyond Common Sense

    Get PDF
    This article seeks to introduce the topic of disability to political theory via a discussion of some of the literature produced by disability theorists. The author argues that these more radical approaches conceptualise disability in ways that conflict with ‘common-sense’ notions of disability that tend to underpin political theoretical considerations of the topic. Furthermore, the author suggests that these more radical conceptualisations have profound implications for current debates on social justice, equality and citizenship that highlight the extent to which these notions are also currently underpinned by ‘common-sense’ notions of ‘normality’

    The African warlord revisited

    Get PDF
    To date, warlordism in Africa has been viewed solely negatively. This has come about, in part, because of the analytical lenses that have been used. Typically, warlordism has been examined at the state level; and behavioural traits, rather than definitionally necessary components, have been the focus. In effect, ‘warlord’ has been confused with other violent actors. I suggest here a reconceptualisation ‘from below’, which takes into account variation in types of warlordism, and which allows for both positive and negative effects of warlordism on society and the state

    Continuous observations of the surface energy budget and meteorology over the Arctic sea ice during MOSAiC

    Get PDF
    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreaker R/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
    corecore