This paper describes the application of finite-size scaling concepts to
domain growth in systems with a non-conserved order parameter. A finite-size
scaling ansatz for the time-dependent order parameter distribution function is
proposed, and tested with extensive Monte-Carlo simulations of domain growth in
the 2-D spin-flip kinetic Ising model. The scaling properties of the
distribution functions serve to elucidate the configurational self-similarity
that underlies the dynamic scaling picture. Moreover, it is demonstrated that
the application of finite-size-scaling techniques facilitates the accurate
determination of the bulk growth exponent even in the presence of strong
finite-size effects, the scale and character of which are graphically exposed
by the order parameter distribution function. In addition it is found that one
commonly used measure of domain size--the scaled second moment of the
magnetisation distribution--belies the full extent of these finite-size
effects.Comment: 13 pages, Latex. Figures available on request. Rep #9401