53 research outputs found

    Governance of ecological restoration at different scales: global, regional, sub-national

    Get PDF
    Desde su inicio formal en 1987, la restauración ecológica evolucionó de una disciplina técnica a un campo trans-episté-mico que alberga científicos, profesionales y actores sociales directamente vinculados a la toma de decisiones, es decir, a la gobernanza de la restauración. Actual-mente, los desafíos prioritarios son más bien políticos, socioculturales, económicos o territoriales, mientras que las decisiones deben estar orientadas a revertir las causas de degradación y manejar los recursos de manera sustentable. Por lo tanto, las medidas no estructurales dependen de la efectiva aplicación de la gobernanza ambiental, tanto pública como privada. En este trabajo se plantea qué gobernanza requiere la restauración, desarrollando la problemática a tres escalas: mundial, regional y sub-nacional o local. Se identifican las necesidades de gobernanza por regiones y las prioridades de gobernanza por dimensiones. Las políticas y modelos culturales de cada región tienen una alta influencia en las situaciones de degradación y sus soluciones, por lo que se recomienda que cada capítulo, red o sociedad de restauración trabaje en los problemas de gobernanza local-nacional.Fil: Zuleta, Gustavo Adolfo. Universidad Maimónides. Centro de Ciencias Naturales, Ambientales y Antropológicas. Departamento de Ecología y Ciencias Ambientales; ArgentinaFil: Hamerlynck, O.. Kenya Wetlands Biodiversity Research Team; KeniaFil: Liu, J.. Southern University Of Science And Technology; ChinaFil: Morales, N.. Universidad Mayor.; ChileFil: Dorado, A.. Universidad Maimónides. Centro de Ciencias Naturales, Ambientales y Antropológicas. Departamento de Ecología y Ciencias Ambientales; Argentina. Universidade de Sao Paulo; BrasilFil: Rovere, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Espinoza Mendoza, Victoria Emperatriz. Universidad Maimónides. Centro de Ciencias Naturales, Ambientales y Antropológicas. Departamento de Ecología y Ciencias Ambientales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rescia A. J.. Universidad Complutense de Madrid; EspañaFil: Guida Johnson, Bárbara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Fernández Cuppari, M.. Universidad Maimónides. Centro de Ciencias Naturales, Ambientales y Antropológicas. Departamento de Ecología y Ciencias Ambientales; Argentin

    Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia

    Get PDF
    T-cell acute lymphoblastic leukaemia (T-ALL) is a haematological malignancy with a dismal overall prognosis, including a relapse rate of up to 25%, mainly because of the lack of non-cytotoxic targeted therapy options. Drugs that target the function of key epigenetic factors have been approved in the context of haematopoietic disorders, and mutations that affect chromatin modulators in a variety of leukaemias have recently been identified; however, ‘epigenetic’ drugs are not currently used for T-ALL treatment. Recently, we described that the polycomb repressive complex 2 (PRC2) has a tumour-suppressor role in T-ALL. Here we delineated the role of the histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX in T-ALL. We show that JMJD3 is essential for the initiation and maintenance of T-ALL, as it controls important oncogenic gene targets by modulating H3K27 methylation. By contrast, we found that UTX functions as a tumour suppressor and is frequently genetically inactivated in T-ALL. Moreover, we demonstrated that the small molecule inhibitor GSKJ4 (ref. 5) affects T-ALL growth, by targeting JMJD3 activity. These findings show that two proteins with a similar enzymatic function can have opposing roles in the context of the same disease, paving the way for treating haematopoietic malignancies with a new category of epigenetic inhibitors.National Institutes of Health (U.S.) (Grant R37-HD04502

    Changes in Liver Lipidomic Profile in G2019S- LRRK2 Mouse Model of Parkinson's Disease

    Get PDF
    15 páginas, 4 figurasThe identification of Parkinson's disease (PD) biomarkers has become a main goal for the diagnosis of this neurodegenerative disorder. PD has not only been intrinsically related to neurological problems, but also to a series of alterations in peripheral metabolism. The purpose of this study was to identify metabolic changes in the liver in mouse models of PD with the scope of finding new peripheral biomarkers for PD diagnosis. To achieve this goal, we used mass spectrometry technology to determine the complete metabolomic profile of liver and striatal tissue samples from WT mice, 6-hydroxydopamine-treated mice (idiopathic model) and mice affected by the G2019S-LRRK2 mutation in LRRK2/PARK8 gene (genetic model). This analysis revealed that the metabolism of carbohydrates, nucleotides and nucleosides was similarly altered in the liver from the two PD mouse models. However, long-chain fatty acids, phosphatidylcholine and other related lipid metabolites were only altered in hepatocytes from G2019S-LRRK2 mice. In summary, these results reveal specific differences, mainly in lipid metabolism, between idiopathic and genetic PD models in peripheral tissues and open up new possibilities to better understand the etiology of this neurological disorder.This research was supported by “Instituto de Salud Carlos III”, “Fondo de Investigaciones Sanitarias” (PI15/0034), “CIBERNED-ISCIII” (CB06/05/0041 and 2015/03), and partially supported by “European Regional Development Fund (ERDF)” from the European Union. J.M.B.-S.P. is funded by “Ramon y Cajal Program” (RYC-2018-025099-I) and supported by Spain’s Ministerio de Ciencia e Innovación (PID2019-108827RA-I00). Y.C.N. and L.M.G. are funded by Community of Madrid (CT5/21/PEJ-2020-TL/BMD-17685 and CT36/22-41-UCM-INV respectively). S.M.S.Y.-D. was supported by CIBERNED-ISCIII. P.M.-C. is funded by the MINECO Spanish Ministry (FPI grant, PRE2020-092668). M.N.-S. was funded by “Ramon y Cajal Program” (RYC-2016-20883). E.U.-C. and S.C.-C. were supported by an FPU predoctoral fellowship (FPU16/00684) and FPU19/04435), respectively, from “Ministerio de Educación, Cultura y Deporte”. M.P-B was funded by a University of Extremadura fellowship. E.A-C was supported by a Grant (IB18048) from Junta de Extremadura, Spain. J.M.F. received research support from the “Instituto de Salud Carlos III”; “Fondo de Investigaciones Sanitarias” (PI15/0034) and CIBERNED-ISCIII (CB06/05/0041 and 2015/03). A.P.-C. was supported by MINECO (SAF2014-52940-R and SAF2017-85199-P). J.P.-T. received funding from CIBERNED-ISCIII (CB06/05/1123 and 2015/03). G.K. is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR)—Projets blancs; ANR under the frame of E-Rare-2, the ERANet for Research on Rare Diseases; AMMICa US/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Association “Le Cancer du Sein, Parlons-en!”; Cancéropôle Ile de-France; Chancelerie des universités de Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); a donation by Elior; European Research Area Network on Cardiovascular Diseases (ERA-CVD, MINOTAUR); Gustave Roussy Odyssea, the European Union Horizon 2020 Project Oncobiome; Fondation Carrefour; High-end Foreign Expert Program in China (GDW20171100085), Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; LeDucq Foundation; the LabEx Immuno-Oncology (ANR-18-IDEX-0001); the RHU Torino Lumière; the Seerave Foundation; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and the SIRIC Cancer Research and Personalized Medicine (CARPEM).Peer reviewe

    Bat pluripotent stem cells reveal unique entanglement between host and viruses

    Get PDF
    Bats have evolved features unique amongst mammals, including flight, laryngeal echolocation, and certain species have been shown to have a unique immune response that may enable them to tolerate viruses such as SARS-CoVs, MERS-CoVs, Nipah, and Marburg viruses. Robust cellular models have yet to be developed for bats, hindering our ability to further understand their special biology and handling of viral pathogens. To establish bats as new model study species, we generated induced pluripotent stem cells (iPSCs) from a wild greater horseshoe bat (Rhinolophus ferrumequinum) using a modified Yamanaka protocol. Rhinolophids are amongst the longest living bat species and are asymptomatic carriers of coronaviruses, including one of the viruses most closely related to SARS-CoV-2. Bat induced pluripotent stem (BiPS) cells were stable in culture, readily differentiated into all three germ layers, and formed complex embryoid bodies, including organoids. The BiPS cells were found to have a core pluripotency gene expression program similar to that of other species, but it also resembled that of cells attacked by viruses. The BiPS cells produced a rich set of diverse endogenized viral sequences and in particular retroviruses. We further validated our protocol by developing iPS cells from an evolutionary distant bat species Myotis myotis (greater mouse-eared bat) non-lethally sampled in the wild, which exhibited similar attributes to the greater horseshoe bat iPS cells, suggesting that this unique pluripotent state evolved in the ancestral bat lineage. Although previous studies have suggested that bats have developed powerful strategies to tame their inflammatory response, our results argue that they have also evolved mechanisms to accommodate a substantial load of endogenous viral sequences and suggest that the natural history of bats and viruses is more profoundly intertwined than previously thought. Further study of bat iPS cells and their differentiated progeny should advance our understanding of the role bats play as virus hosts, provide a novel method of disease surveillance, and enable the functional studies required to ascertain the molecular basis of bats’ unique traits.N

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore