368 research outputs found

    Hubble-COS Observations of Galactic High-Velocity Clouds: Four AGN Sight Lines through Complex C

    Full text link
    We report ultraviolet spectra of Galactic high-velocity clouds (HVCs) in Complex C, taken by the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), together with new 21-cm spectra from the Green Bank Telescope. The wide spectral coverage and higher S/N, compared to previous HST spectra, provide better velocity definition of the HVC absorption, additional ionization species, and improved abundances in this halo gas. Complex C has a metallicity of 0.1-0.3 solar and a wide range of ions, suggesting dynamical and thermal interactions with hot gas in the Galactic halo. Spectra in the COS medium-resolution G130M (1133-1468 A) and G160M (1383-1796 A) gratings detect ultraviolet absorption lines from 8 elements in low ionization stages (O I, N I, C II, S II, Si II, Al II, Fe II, P II) and 3 elements in intermediate and high-ionization states (Si III, Si IV, C IV, N V). Our four AGN sight lines toward Mrk 817, Mrk 290, Mrk 876, and PG1259+593 have high-velocity H I and O VI column densities, log N_HI = 19.39-20.05 and log N_OVI = 13.58-14.10, with substantial amounts of kinematically associated photoionized gas. The high-ion abundance ratios are consistent with cooling interfaces between photoionized gas and collisionally ionized gas: N(C IV)/N(O VI) = 0.3-0.5, N(Si IV)/N(O VI) = 0.05-0.11, N(N V)/N(O VI) = 0.07-0.13, and N(Si IV)/N(Si III) = 0.2.Comment: 43 pages, 11 figures (appearing in ApJ, Sept 1, 2011

    Does training with amplitude modulated tones affect tone-vocoded speech perception?

    Get PDF
    Temporal-envelope cues are essential for successful speech perception. We asked here whether training on stimuli containing temporal-envelope cues without speech content can improve the perception of spectrally-degraded (vocoded) speech in which the temporal-envelope (but not the temporal fine structure) is mainly preserved. Two groups of listeners were trained on different amplitude-modulation (AM) based tasks, either AM detection or AM-rate discrimination (21 blocks of 60 trials during two days, 1260 trials; frequency range: 4Hz, 8Hz, and 16Hz), while an additional control group did not undertake any training. Consonant identification in vocoded vowel-consonant-vowel stimuli was tested before and after training on the AM tasks (or at an equivalent time interval for the control group). Following training, only the trained groups showed a significant improvement in the perception of vocoded speech, but the improvement did not significantly differ from that observed for controls. Thus, we do not find convincing evidence that this amount of training with temporal-envelope cues without speech content provide significant benefit for vocoded speech intelligibility. Alternative training regimens using vocoded speech along the linguistic hierarchy should be explored

    Numerical studies of the phase diagram of layered type II superconductors in a magnetic field

    Full text link
    We report on simulations of layered superconductors using the Lawrence-Doniach model in the framework of the lowest Landau level approximation. We find a first order phase transition with a B(T)B(T) dependence which agrees very well with the experimental ``melting'' line in YBaCuO. The transition is not associated with vortex lattice melting, but separates two vortex liquid states characterised by different degrees of short-range crystalline order and different length scales of correlations between vortices in different layers. The transition line ends at a critical end-point at low fields. We find the magnetization discontinuity and the location of the lower critical magnetic field to be in good agreement with experiments in YBaCuO. Length scales of order parameter correlations parallel and perpendicular to the magnetic field increase exponentially as 1/T at low temperatures. The dominant relaxation time scales grow roughly exponentially with these correlation lengths. We find that the first order phase transition persists in the presence of weak random point disorder but can be suppressed entirely by strong disorder. No vortex glass or Bragg glass state is found in the presence of disorder. The consistency of our numerical results with various experimental features in YBaCuO, including the dependence on anisotropy, and the temperature dependence of the structure factor at the Bragg peaks in neutron scattering experiments is demonstrated.Comment: 25 pages (revtex), 19 figures included, submitted to PR

    On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function

    Full text link
    A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4--8 per cent of the baryon density (assuming Omega_b = 0.045). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the z < 0.05 GSMF using the New York University - Value-Added Galaxy Catalog sample of 49968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has alpha_2 =~ -1.6. At masses below ~ 10^8.5 Msun, the GSMF may be significantly incomplete because of missing low surface-brightness galaxies. One interpretation of the stellar mass-metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principal, we determine a simple relationship between baryonic mass and stellar mass and present an `implied baryonic mass function'. This function has a faint-end slope, alpha_2 =~ -1.9. Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function --> galaxy baryonic mass function --> GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses ~ 10^11 Msun corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.Comment: Changes to section 4.3 and figs 12, 13; 15 pages (10 pages excluding Appendix and refs), accepted by MNRAS; binned GSMF data file is available at http://www.astro.ljmu.ac.uk/~ikb/research/gsmf-paper.htm

    The Role of Environment in the Mass-Metallicity Relation

    Full text link
    Using a sample of 57,377 star-forming galaxies drawn from the Sloan Digital Sky Survey, we study the relationship between gas-phase oxygen abundance and environment in the local Universe. We find that there is a strong relationship between metallicity and environment such that more metal-rich galaxies favor regions of higher overdensity. Furthermore, this metallicity-density relation is comparable in strength to the color-density relation along the blue cloud. After removing the mean dependence of environment on color and luminosity, we find a significant residual trend between metallicity and environment that is largely driven by galaxies in high-density regions, such as groups and clusters. We discuss the potential source of this relationship between metallicity and local galaxy density in the context of feedback models, with special attention paid to quantifying the impact of environment on the scatter in the mass-metallicity relation. We find that environment is a non-negligible source of scatter in this fundamental relation, with > 15% of the measured scatter correlated with environment.Comment: Submitted to MNRA

    The Impact of Feedback on Disk Galaxy Scaling Relations

    Full text link
    We use a disk galaxy evolution model to investigate the impact of mass outflows (a.k.a. feedback) on disk galaxy scaling relations. Our model follows the accretion, cooling, star formation and ejection of baryonic mass inside growing dark matter haloes, with cosmologically motivated specific angular momentum distributions. Models without feedback produce disks that are too small and rotate too fast. Feedback reduces the baryonic masses of galaxies, resulting in larger disks with lower rotation velocities. Models with feedback can reproduce the zero points of the scaling relations between rotation velocity, stellar mass and disk size, but only in the absence of adiabatic contraction. Our feedback mechanism is maximally efficient in expelling mass, but our successful models require 25% of the SN energy, or 100% of the SN momentum, to drive the outflows. It remains to be seen whether such high efficiencies are realistic or not. Our energy and momentum driven wind models result in different slopes of various scaling relations, such as size - stellar mass, stellar mass - halo mass, and metallicity - stellar mass. Observations favor the energy driven wind at stellar masses below Mstar = 10^{10.5} Msun, but the momentum driven wind model at high masses. The ratio between the specific angular momentum of the baryons to that of the halo, (j_gal/m_gal), is not unity in our models. Yet this is the standard assumption in models of disk galaxy formation. Feedback preferentially ejects low angular momentum material because star formation is more efficient at smaller galactic radii. This results in (j_gal/m_gal) increasing with decreasing halo mass. This effect helps to resolve the discrepancy between the high spin parameters observed for dwarf galaxies with the low spin parameters predicted from LCDM. [Abridged]Comment: 27 pages, 16 figures, accepted to MNRAS, two new figure

    Satellite content and quenching of star formation in galaxy groups at z ~ 1.8

    Get PDF
    We study the properties of satellites in the environment of massive star-forming galaxies at z ~ 1.8 in the COSMOS field, using a sample of 215 galaxies on the main sequence of star formation with an average mass of ~1011M⊙. At z> 1.5, these galaxies typically trace halos of mass ≳1013M⊙. We use optical-near-infrared photometry to estimate stellar masses and star formation rates (SFR) of centrals and satellites down to ~ 6 × 109M⊙. We stack data around 215 central galaxies to statistically detect their satellite halos, finding an average of ~3 galaxies in excess of the background density. We fit the radial profiles of satellites with simple ÎČ-models, and compare their integrated properties to model predictions. We find that the total stellar mass of satellites amounts to ~68% of the central galaxy, while spectral energy distribution modeling and far-infrared photometry consistently show their total SFR to be 25-35% of the central's rate. We also see significant variation in the specific SFR of satellites within the halo with, in particular, a sharp decrease at <100 kpc. After considering different potential explanations, we conclude that this is likely an environmental signature of the hot inner halo. This effect can be explained in the first order by a simple free-fall scenario, suggesting that these low-mass environments can shut down star formation in satellites on relatively short timescales of ~0.3 Gyr

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Oynophagia in patients after dental extraction: surface electromyography study

    Get PDF
    OBJECTIVES: Surface electromyographic (sEMG) studies were performed on 40 adult patients following extraction of lower third and second molars to research the approach and limitations of sEMG evaluation of their odynophagia complaints. METHODS: Parameters evaluated during swallowing and drinking include the timing, number of swallows per 100 cc of water, and range (amplitude) of EMG activity of m. masseter, infrahyoid and submental-submandibular group. The above mentioned variables (mean + standard deviation) were measured for the group of dental patients (n = 40) and control group of healthy adults (n = 40). RESULTS: The duration of swallows and drinking in all tests showed increase in dental patients' group, in which this tendency is statistically significant. There was no statistically significant difference between male and female adults' duration and amplitude of muscle activity during continuous drinking in both groups (p = 0.05). The mean of electric activity (in ÎŒV) of m. masseter was significantly lower in the dental patients' group in comparison with control group. The electric activity of submental-submandimular and infrahyoid muscle groups was the same in both groups. CONCLUSION: Surface EMG of swallowing is a simple and reliable noninvasive method for evaluation of odynophagia/dysphagia complaints following dental extraction with low level of discomfort of the examination. The surface EMG studies prove that dysphagia following dental extraction and molar surgery has oral origin, does not affect pharingeal segment and submental-submandibular muscle group. This type of dysphagia has clear EMG signs: increased duration of single swallow, longer drinking time, low range of electric activity of m. masseter, normal range of activity of submental-submandibular muscle group, and the "dry swalow" aftereffect. The data can be used for evaluation of complaints and symptoms, as well as for comparison purposes in pre- and postoperative stages and in EMG monitoring during treatment of post-surgical oral cavity discomfort and dysphagia

    Structure of visible and dark matter components in spiral galaxies at redshifts z = 0.5-0.9

    Full text link
    We have constructed self-consistent light and mass distribution models for four disk galaxies at redshifts z = 0.48, 0.58, 0.81 and 0.88, using the HST archive WFPC2 observations and rotation curves measured by Vogt et al. (1996) and Rigopoulou et al. (2002). The models consist of three components: a bulge, a disk and a dark matter halo. Similarly to the sample studied in Paper I (Tamm & Tenjes, 2003), light distribution of the galaxies in the outer parts is clearly steeper than a simple exponential disk. After applying k-corrections, calculated mass-to-light ratios for galactic disks within the maximum disk assumption are M/L_B = 0.9, 7.4, 4.3 and 1.4, respectively. Together with the galaxies from Paper I, the mean = 2.5 at ~0.9, indicating no significant evolution of M/L_B with redshift. Central densities of dark matter halos for an isothermal model are 0.008, 0.035, 0.013, and 0.022 in units M_sun/pc^3, respectively. Together with the galaxies from Paper I, the DM central density of the four galaxies at mean readshift ~0.9 is rho(0) = (0.012-0.028) M_sun/pc^3, also showing no significant evolution with redshift.Comment: 11 pages, 10 figures, Astron. Astrophys. accepte
    • 

    corecore