913 research outputs found

    Precise calculation of parity nonconservation in cesium and test of the standard model

    Get PDF
    We have calculated the 6s-7s parity nonconserving (PNC) E1 transition amplitude, E_{PNC}, in cesium. We have used an improved all-order technique in the calculation of the correlations and have included all significant contributions to E_{PNC}. Our final value E_{PNC} = 0.904 (1 +/- 0.5 %) \times 10^{-11}iea_{B}(-Q_{W}/N) has half the uncertainty claimed in old calculations used for the interpretation of Cs PNC experiments. The resulting nuclear weak charge Q_{W} for Cs deviates by about 2 standard deviations from the value predicted by the standard model.Comment: 24 pages, 8 figure

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    The energy dependence of ptp_t angular correlations inferred from mean-ptp_{t} fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of ptp_t angular correlations inferred from event-wise mean transverse momentum fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related fluctuations near 10 GeV.Comment: 10 pages, 4 figure

    Enhanced Maintenance and Explanation of Expert Systems Through Explicit Models of Their Development

    Get PDF
    Principled development techniques could greatly enhance the understandability of expert systems for both users and system developers. Current systems have limited explanatory capabilities and present maintenance problems because of a failure to explicitly represent the knowledge and reasoning that went into their design. This paper describes a paradigm for constructing expert systems which attempts to identify that tacit knowledge, provide means for capturing it in the knowledge bases of expert systems, and, apply it towards more perspicuous machine-generated explanations and more consistent and maintainable system organization

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)
    corecore