177 research outputs found

    Phylogeny of the order Zoantharia (Anthozoa, Hexacorallia) based on the mitochondrial ribosomal genes

    Get PDF
    Zoantharia (or Zoanthidea) is the third largest order of Hexacorallia, characterised by two rows of tentacles, one siphonoglyph and a colonial way of life. Current systematics of Zoantharia is based exclusively on morphology and follows the traditional division of the group into the two suborders Brachycnemina and Macrocnemina, each comprising several poorly defined genera and species. To resolve the phylogenetic relationships among Zoantharia, we have analysed the sequences of mitochondrial 16S and 12S rRNA genes obtained from 24 specimens, representing two suborders and eight genera. In view of our data, Brachycnemina appears as a monophyletic group diverging within the paraphyletic Macrocnemina. The macrocnemic genus Epizoanthus branches as the sister group to all other Zoantharia that are sampled. All examined genera are monophyletic, except Parazoanthus, which comprises several independently branching clades and individual sequences. Among Parazoanthus, some groups of species can be defined by particular insertion/deletion patterns in the DNA sequences. All these clades show specificity to a particular type of substrate such as sponges or hydrozoans. Substrate specificity is also observed in zoantharians living on gorgonians or anthipatharians, as in the genus Savalia (Gerardia). If confirmed by further studies, the substrate specificity could be used as reliable character for taxonomic identification of some Macrocnemin

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Association Patterns in Saproxylic Insect Networks in Three Iberian Mediterranean Woodlands and Their Resistance to Microhabitat Loss

    Get PDF
    The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages’ persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly defined different sensitivity to microhabitat loss, and higher saproxylic diversity and woodland complexity showed positive relation with robustness. These results highlight that woodland complexity goes hand in hand with biotic and ecological complexity of saproxylic networks, and together exhibited positive effects on network robustness.The research Projects I+D CGL2011-23658 y CGL2012-31669 of the Spanish Minister of Science provided economic support

    Impact of COVID-19 on Formal Education: An International Review of Practices and Potentials of Open Education at a Distance

    Get PDF
    In terms of scale, shock, and disenfranchisement, the disruption to formal education arising from COVID-19 has been unprecedented. Anecdotally, responses from teachers and educators around the world range from heightened caution to being inspired by distance education as the “new normal.” Of all the challenges, face-to-face and formal teaching have been most heavily affected. Despite some education systems demonstrating resilience, a major challenge is sustaining quality and inclusiveness in formal education suddenly delivered at a distance. In probing these issues, this article profiles international perspectives on the role of open education in responding to the impact on formal school and higher education caused by the COVID-19 pandemic. We proceed by highlighting and analysing practices and case studies from 13 countries representing all global regions, identifying and discussing the challenges and opportunities that have presented themselves. Reports cover the period from the beginning of 2020 until 11 March 2021, the first anniversary of the COVID-19 outbreak as declared by the World Health Organization. In our comparative study, we identify seven key aspects of which three (missing infrastructure and sharing OER, open education and access to OER, and urgent need for professional development and training for teachers) are directly related to open education at a distance. After comparing examples of existing practice, we make recommendations and offer insights into how open education strategies can lead to interventions that are effective and innovative—to improve formal education at a distance in schools and universities in the future

    Patterns of Positive Selection and Neutral Evolution in the Protein-Coding Genes of Tetraodon and Takifugu

    Get PDF
    Recent genome-wide analyses have revealed patterns of positive selection acting on protein-coding genes in humans and mammals. To assess whether the conclusions drawn from these analyses are valid for other vertebrates and to identify mammalian specificities, I have investigated the selective pressure acting on protein-coding genes of the puffer fishes Tetraodon and Takifugu. My results indicate that the strength of purifying selection in puffer fishes is similar to previous reports for murids but stronger in hominids, which have a smaller population size. Gene ontology analyses show that more than half of the biological processes targeted by positive selection in mammals are also targeted in puffer fishes, highlighting general patterns for vertebrates. Biological processes enriched with positively selected genes that are shared between mammals and fishes include immune and defense responses, signal transduction, regulation of transcription and several of their descendent terms. Mammalian-specific processes displaying an excess of positively selected genes are related to sensory perception and neurological processes. The comparative analyses also revealed that, for both mammals and fishes, genes encoding extracellular proteins are preferentially targeted by positive selection, indicating that adaptive evolution occurs more often in the extra-cellular environment rather than inside the cell. Moreover, I present here the first genome-wide characterization of neutrally-evolving regions of protein-coding genes. This analysis revealed an unexpectedly high proportion of genes containing both positively selected motifs and neutrally-evolving regions, uncovering a strong link between neutral evolution and positive selection. I speculate that neutrally-evolving regions are a major source of novelties screened by natural selection
    • …
    corecore