105 research outputs found
Shed vesicles are involved in the release of some leaderless proteins.
Most proteins destined for secretion in the extracellular matrix are characterized by the presence of
N-terminal signal peptides which direct their translocation into the endoplasmic reticulum, they are
subsequently transferred to the Golgi apparatus and then secreted in the extracellular space.
A growing number of secreted proteins, are being identified which, however, lack signal peptides
allowing their entrance into the endoplasmic reticulum. They include the inflammatory cytokine
interleukin 1b, galactins, macrophage migration inhibitory factor (MIF), acid and basic fibroblast
growth factors (FGF-1, FGF-2) and Sphingosine kinase1(SphK-1). These proteins are secreted from
the cell by unconventional processes which are the subject of numerous studies.
Several types of normal and tumor cells can release in the extracellular medium microvesicles,
called esovesicles, which result from budding of their plasma membranes. The vesicle diameter
ranges between 100nm and 1000nm, the vesicle composition and function depends on the kind of
the cell from which they have been produced. We already reported that FGF-2, a secreted lectin that
transmits proangiogenic signals, and which is recognized as a potential oncoprotein able to
modulate tumour growth and malignancy (Sorensen et al 2006), is released from SkHep1 cells, and
from transfected NIH 3T3 cells through vesicle shedding (Taverna et al.2003).
Now we are trying to elucidate the intracellular route followed by the growth factor from the site of
synthesis to vesicles budding from the cell membrane. Actin filaments appear to be a binary for this
intracellular trafficking. After 6h of treatment with cytocalasine, a drug that interferes with actin
polymerization, the amount of vesicles was in fact decreased and FGF-2 clustering in granules
localized near the cell surface was avoided. On the contrary no effects were observed when cells
were treated with drugs which interfere with microtubule polymerization or de-polymerization. We
also observed that FGF-2 granules are not included in lipid-coated vesicles.
We are also analyzing the possibility that esovesicles are involved in the secretion of another
leader-less signalling protein: Sphingosine kinase1 (SphK1). SphK1 has been shown to regulate a
wide variety of cellular processes, including promotion of cell proliferation, survival and motility
(Spiegel et al. 2003). SphK1 is primarily localized in the cytosol; when a signal induces the
phosphorylation of Ser 225 of SphK1 through the activation of MAPK and ERK1/2, the molecule is
translocated in plasma membranes and the involvement of actin filaments in its targeting has been
reported (Pitson et. al. 2003). Three SphK1 isoforms having a different number of amino acids
(384, 398 and 470) have been identified, we found that extracellular vesicles are enriched in the
47kDa isoform. SphK assays with TLC confirm that the enzyme is present in shed vesicles and that
it has enzymatic activity. The substrate Sphingosine is also present in esovesicles therefore shed
vesicles are likely to be a site of Sphingosine 1 Phosphate production
Acetylcholine-treated murine dendritic cells promote inflammatory lung injury
In recent years a non-neuronal cholinergic system has been described in immune cells, which is often usually activated during the course of inflammatory processes. To date, it is known that Acetylcholine (ACh), a neurotransmitter extensively expressed in the airways, not only induces bronchoconstriction, but also promotes a set of changes usually associated with the induction of allergic/Th2 responses. We have previously demonstrated that ACh polarizes human dendritic cells (DC) toward a Th2-promoting profile through the activation of muscarinic acetylcholine receptors (mAChR). Here, we showed that ACh promotes the acquisition of an inflammatory profile by murine DC, with the increased MHC II IAd expression and production of two cytokines strongly associated with inflammatory infiltrate and tissue damage, namely TNF-α and MCP-1, which was prevented by blocking mAChR. Moreover, we showed that ACh induces the up-regulation of M3 mAChR expression and the blocking of this receptor with tiotropium bromide prevents the increase of MHC II IAd expression and TNF-α production induced by ACh on DC, suggesting that M3 is the main receptor involved in ACh-induced activation of DC. Then, using a short-term experimental murine model of ovalbumin-induced lung inflammation, we revealed that the intranasal administration of ACh-treated DC, at early stages of the inflammatory response, might be able to exacerbate the recruitment of inflammatory mononuclear cells, promoting profound structural changes in the lung parenchyma characteristic of chronic inflammation and evidenced by elevated systemic levels of inflammatory marker, TNF-α. These results suggest a potential role for ACh in the modulation of immune mechanisms underlying pulmonary inflammatory processes.Fil: Gori, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Alcain, Julieta María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Vanzulli, Silvia. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Moreno Ayala, Mariela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Candolfi, Marianela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Jancic, Carolina Cristina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Cátedra de Microbiología, Parasitología e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Geffner, Jorge Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Cátedra de Microbiología, Parasitología e Inmunología; ArgentinaFil: Vermeulen, Elba Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Cátedra de Microbiología, Parasitología e Inmunología; ArgentinaFil: Salamone, Gabriela Veronica. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología. Cátedra de Microbiología, Parasitología e Inmunología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin
An Active Form of Sphingosine Kinase-1 Is Released in the Extracellular Medium as Component of Membrane Vesicles Shed by Two Human Tumor Cell Lines
Expression of sphingosine kinase-1 (SphK-1) correlates with a poor survival rate of tumor patients. This effect is probably due to the ability of SphK-1 to be released into the extracellular medium where it catalyzes the biosynthesis of sphingosine-1-phosphate (S1P), a signaling molecule endowed with profound proangiogenic effects. SphK-1 is a leaderless protein which is secreted by an unconventional mechanism. In this paper, we will show that in human hepatocarcinoma Sk-Hep1 cells, extracellular signaling is followed by targeting the enzyme to the cell surface and parallels targeting of FGF-2 to the budding vesicles. We will also show that SphK-1 is present in a catalitycally active form in vesicles shed by SK-Hep1 and human breast carcinoma 8701-BC cells. The enzyme substrate sphingosine is present in shed vesicles where it is produced by neutral ceramidase. Shed vesicles are therefore a site for S1P production in the extracellular medium and conceivably also within host cell following vesicle endocytosis
Applicazione di un veloce metodo di estrazione del DNA per l’identificazione di prodotti ittici marini.
L'identificazione dei prodotti ittici è uno dei temi chiave in materia di sicurezza alimentare.
L’errata etichettatura dei prodotti alimentari e la sostituzione di alcuni ingredienti rappresentano questioni emergenti in termini di qualità e sicurezza alimentare e nutrizionale.
L'autenticazione e la tracciabilità dei prodotti alimentari, gli studi di tassonomia e di genetica di popolazione, così come l'analisi delle abitudini alimentari degli animali e la selezione delle prede, si basano su analisi genetiche tra cui la metodica molecolare del DNA barcoding, che consiste nell’amplificazione e nel sequenziamento di una specifica regione del gene mitocondriale chiamata COI.
Questa tecnica biomolecolare è utilizzata per fronteggiare la richiesta di determinazione specifica e/o la reale provenienza dei prodotti commercializzati, nonché per smascherare errori di etichettatura e sostituzioni fraudolente, difficile da rilevare soprattutto nei prodotti ittici trasformati. Sul mercato sono disponibili differenti kit per l'estrazione del DNA da campioni freschi e conservati; l’impiego dei kit, aumenta drasticamente il costo dei progetti di caratterizzazione e di genotipizzazione dei campioni da analizzare.
In questo scenario è stato messo a punto un metodo veloce di estrazione del DNA. Esso non prevede nessuna fase di purificazione per i prodotti ittici freschi e trasformati e si presta a qualsiasi analisi che preveda l’utilizzo della tecnica PCR. Il protocollo consente l'amplificazione efficiente del DNA da qualsiasi scarto industriale proveniente dalla lavorazione del pesce, indipendentemente dal metodo di conservazione del campione.
L’applicazione di questo metodo di estrazione del DNA, combinato al successo e alla robustezza della amplificazione PCR (secondo protocollo barcode) ha permesso di ottenere, in tempi brevissimi e con costi minimi, il sequenziamento del DNA
Papel dual de la linfopoyetina estromal tímica (TSLP): ¿regulador homeostático o mediador pro-inflamatorio?
Linfopoyetina estromal tímica o TSLP es una citoquina emparentada con la IL-7, producida principalmente por células epiteliales del pulmón, piel e intestino. La TSLP fue originalmente descripta por activar fuertemente a las células dendríticas mieloides, induciendo una respuesta Th2 inflamatoria caracterizada por alta producción de TNF- α y poca o nula producción de IL-10, diferenciándose de las respuestas Th2 regulatorias caracterizadas por una baja producción de TNF- α y alta producción de IL-10. En los últimos años, se ha descripto una correlación directa entre la expresión de TSLP por el epitelio y la patogénesis de enfermedades tales como la dermatitis atópica y el asma, al observarse una elevada expresión de esta citoquina en queratinocitos de lesiones cutáneas de pacientes con dermatitis atópica y en la mucosa bronquial de pacientes asmáticos. Sin embargo, estudios más recientes sugieren que TSLP también puede desempeñar un papel clave en el desarrollo de un perfil Th2 protector en intestino, siendo crítico para el mantenimiento de la homeostasis y tolerancia de la mucosa intestinal mediante la limitación de las respuestas inmunitariasFil: Gori, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Alcain, Julieta María. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Vermeulen, Elba Monica. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Salamone, Gabriela Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentin
The nucleic acid-binding protein PcCNBP is transcriptionally regulated during the immune response in red swamp crayfish Procambarus clarkii
Gene family encoding cellular nucleic acid binding proteins (CNBP) is well conserved among vertebrates; however, there is limited knowledge in lower organisms. In this study, a CNBP homolog from the red swamp crayfish Procambarus clarkii was characterised. The full-length cDNA of PcCNBP was of 1257 bp with a 5′-untranslated region (UTR) of 63 bp and a 3′-UTR of 331 bp with a poly (A) tail, and an open-reading frame (ORF) of 864 bp encoding a polypeptide of 287 amino acids with the predicted molecular weight of about 33 kDa. The predicted protein possesses 7 tandem repeats of 14 amino acids containing the CCHC zinc finger consensus sequence, two RGG-rich single-stranded RNA-binding domain and a nuclear localization signal, strongly suggesting that PcCNBP was a homolog of vertebrate CNBP. The PcCNBP transcript was constitutively expressed in all tested tissues of unchallenged crayfish, including hepatopancreas, gill, eyestalk, haemocytes, intestine, stomach and cuticle with highest expression in haemocytes, intestine, gills and hepatopancreas. The mRNA expression of PcCNBP in haemocytes was modulated at transcriptional level by different immune challenges, suggesting its involvement in the immune response of P. clarkii during both bacteria and viruses infection
A novel enzyme blend for efficient tissue dissociation and primary cells isolation
Tissue dissociation/primary cell isolation and cell harvesting are principal appli- cations for enzymes in tissue culture research and cell biology studies. The goal of a cell isolation procedure is to maximize the yield of functionally viable dissoci- ated cells. Among the parameters which affect the outcome of any particular dissociating procedure there are enzyme(s) used and related impurities presents in crude enzyme preparation. ABIEL srl recently produced the recombinant collagenase class I (Col G) and II (Col H) from Clostridium histolyticum (PCT WO 2011/073925 A9). The enzymes were produced in Escherichia coli and purified by affinity chromatography. The method of production adopted allows absolute control of the final composition of these enzymes, as well as their stability, purity, activity, absence of toxicity and higher reproducibility of batches. The two collagenases produced separately have been used in conjunction according to precise proportions to dissociate calvaria, liver, pancreas, retina of the BALB/c mouse; and bovine hoof. The analyses carried out on all isolated cell populations suggest that the cells maintain the structural and functional integrity of specific tissues/organs originating. Recombinant Col G and Col H enzymes produced by ABIEL are promising in the context of the tissue/cells dissociation, with the aim to make innovation in the fields of tissue engineering and transplantation medicine
Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil
[EN] The bioherbicidal potential ofThymbra capitata(L.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth ofErigeron canadensisL.,Sonchus oleraceus(L.) L., andChenopodium albumL. at 0.125 mu L/mL, ofSetaria verticillata(L.) P.Beauv.,Avena fatuaL., andSolanum nigrumL. at 0.5 mu L/mL, ofAmaranthus retroflexusL. at 1 mu L/mL and ofPortulaca oleraceaL., andEchinochloa crus-galli(L.) P.Beauv. at 2 mu L/mL. Under greenhouse conditions,T. capitataEO was tested towards the emergent weeds from a soil seedbank in pre and post emergence, showing strong herbicidal potential in both assays at 4 mu L/mL. In addition,T. capitataEO, applied by spraying, was tested againstP. oleracea,A. fatuaandE. crus-galli. The species showed different sensibility to the EO, beingE. crus-gallithe most resistant. Experiments were performed againstA. fatuatestingT. capitataEO and carvacrol applied by spraying or by irrigation. It was verified that the EO was more active at the same doses in monocotyledons applied by irrigation and in dicotyledons applied by spraying. Carvacrol effects onArabidopsisroot morphology were also studied.This research was supported by the Universitat Politècnica de València [project number: SP20120543],
by Generalitat Valenciana [project number GV/2014/039], and by the Spanish Ministry of Science, Innovation
and Universities [project number: RTI2018¿094716¿B¿I00].
Thanks to Jovano Erris Nugroho and Muhamad Iqbal who collaborate to carry out in vivo experiment 4 during their internship in the Plant Health in Sustainable Cropping Systems Erasmus+ Programme. This research work has been developed as a result of a mobility stay funded by the Erasmus+-KA1 Erasmus Mundus Joint Master Degrees Programme of the European Commission under the PLANT HEALTH Project. Thanks to Xeda Italia S.r.l. for providing us Fitoil always when we need it. Thanks to Vicente Estornell Campos and the Library staff from Polytechnic University of Valencia that assisted us to get some helpful references.Verdeguer Sancho, MM.; Torres-Pagan, N.; Muñoz, M.; Jouini, A.; García-Plasencia, S.; Chinchilla, P.; Berbegal Martinez, M.... (2020). Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil. Molecules. 25(12):1-31. https://doi.org/10.3390/molecules25122832S1312512Barros, L., Heleno, S. A., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 43(3), 544-550. doi:10.1016/j.lwt.2009.09.024Goudjil, M. B., Zighmi, S., Hamada, D., Mahcene, Z., Bencheikh, S. E., & Ladjel, S. (2020). Biological activities of essential oils extracted from Thymus capitatus (Lamiaceae). South African Journal of Botany, 128, 274-282. doi:10.1016/j.sajb.2019.11.020Gagliano Candela, R., Maggi, F., Lazzara, G., Rosselli, S., & Bruno, M. (2019). The Essential Oil of Thymbra capitata and its Application as A Biocide on Stone and Derived Surfaces. Plants, 8(9), 300. doi:10.3390/plants8090300Tohidi, B., Rahimmalek, M., Arzani, A., & Sabzalian, M. R. (2020). Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chemistry, 307, 125521. doi:10.1016/j.foodchem.2019.125521Vladimir-Knežević, S., Blažeković, B., Kindl, M., Vladić, J., Lower-Nedza, A., & Brantner, A. (2014). Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family. Molecules, 19(1), 767-782. doi:10.3390/molecules19010767BRÄUCHLER, C. (2018). Delimitation and revision of the genus Thymbra (Lamiaceae). Phytotaxa, 369(1), 15. doi:10.11646/phytotaxa.369.1.2Paton, A. J., Springate, D., Suddee, S., Otieno, D., Grayer, R. J., Harley, M. M., … Savolainen, V. (2004). Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics and Evolution, 31(1), 277-299. doi:10.1016/j.ympev.2003.08.002Pastore, J. F. B., Harley, R. M., Forest, F., Paton, A., & van den Berg, C. (2011). Phylogeny of the subtribe Hyptidinae (Lamiaceae tribe Ocimeae) as inferred from nuclear and plastid DNA. TAXON, 60(5), 1317-1329. doi:10.1002/tax.605008Salmaki, Y., Zarre, S., Ryding, O., Lindqvist, C., Bräuchler, C., Heubl, G., … Bendiksby, M. (2013). Molecular phylogeny of tribe Stachydeae (Lamiaceae subfamily Lamioideae). Molecular Phylogenetics and Evolution, 69(3), 535-551. doi:10.1016/j.ympev.2013.07.024Salmaki, Y., Kattari, S., Heubl, G., & Bräuchler, C. (2016). Phylogeny of non-monophyletic Teucrium (Lamiaceae: Ajugoideae): Implications for character evolution and taxonomy. Taxon, 65(4), 805-822. doi:10.12705/654.8LI, B., & OLMSTEAD, R. G. (2017). Two new subfamilies in Lamiaceae. Phytotaxa, 313(2), 222. doi:10.11646/phytotaxa.313.2.9Bräuchler, C., Meimberg, H., & Heubl, G. (2010). Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) – Taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution, 55(2), 501-523. doi:10.1016/j.ympev.2010.01.016World Checklist of Lamiaceae. Facilitated by the Royal Botanic Gardens, Kewhttp://wcsp.science.kew.orgHarley, R. M., Atkins, S., Budantsev, A. L., Cantino, P. D., Conn, B. J., Grayer, R., … Upson, T. (2004). Labiatae. Flowering Plants · Dicotyledons, 167-275. doi:10.1007/978-3-642-18617-2_11Miceli, A., Negro, C., & Tommasi, L. (2006). Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochemical Systematics and Ecology, 34(6), 528-535. doi:10.1016/j.bse.2005.12.010Delgado-Adámez, J., Garrido, M., Bote, M. E., Fuentes-Pérez, M. C., Espino, J., & Martín-Vertedor, D. (2017). Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. Journal of Food Science and Technology, 54(7), 1857-1865. doi:10.1007/s13197-017-2617-5Alves, T. M. de A., Silva, A. F., Brandão, M., Grandi, T. S. M., Smânia, E. de F. A., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95(3), 367-373. doi:10.1590/s0074-02762000000300012BOUNATIROU, S., SMITI, S., MIGUEL, M., FALEIRO, L., REJEB, M., NEFFATI, M., … PEDRO, L. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105(1), 146-155. doi:10.1016/j.foodchem.2007.03.059Nejad Ebrahimi, S., Hadian, J., Mirjalili, M. H., Sonboli, A., & Yousefzadi, M. (2008). Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chemistry, 110(4), 927-931. doi:10.1016/j.foodchem.2008.02.083Casiglia, S., Bruno, M., Scandolera, E., Senatore, F., & Senatore, F. (2019). Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arabian Journal of Chemistry, 12(8), 2704-2712. doi:10.1016/j.arabjc.2015.05.017Grayer, R. J., & Harborne, J. B. (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), 19-42. doi:10.1016/0031-9422(94)85005-4Kalemba, D., & Kunicka, A. (2003). Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10(10), 813-829. doi:10.2174/0929867033457719Ricci, D., Fraternale, D., Giamperi, L., Bucchini, A., Epifano, F., Burini, G., & Curini, M. (2005). Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). Journal of Ethnopharmacology, 98(1-2), 195-200. doi:10.1016/j.jep.2005.01.022Al-Mustafa, A. H., & Al-Thuniba, O. Y. (2008). Antioxidant Activity of Some Jordanian Medicinal Plants Used Traditionally for Treatment of Diabetes. Pakistan Journal of Biological Sciences, 11(3), 351-358. doi:10.3923/pjbs.2008.351.358Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines, 3(4), 25. doi:10.3390/medicines3040025Ruberto, G., Biondi, D., & Piattelli, M. (1992). The Essential Oil of SicilianThymus capitatus(L.) Hoffmanns, et Link. Journal of Essential Oil Research, 4(4), 417-418. doi:10.1080/10412905.1992.9698094Saija, A., Speciale, A., Trombetta, D., Leto, C., Tuttolomondo, T., La Bella, S., … Ruberto, G. (2016). Phytochemical, Ecological and Antioxidant Evaluation of Wild Sicilian Thyme: Thymbra capitata
(L.) Cav
. Chemistry & Biodiversity, 13(12), 1641-1655. doi:10.1002/cbdv.201600072Arras, G., & Grella, G. E. (1992). Wild thyme,Thymus capitatus, essential oil seasonal changes and antimycotic activity. Journal of Horticultural Science, 67(2), 197-202. doi:10.1080/00221589.1992.11516237Tommasi, L., Negro, C., Cerfeda, A., Nutricati, E., Zuccarello, V., De Bellis, L., & Miceli, A. (2007). Influence of Environmental Factors on Essential Oil Variability inThymbra capitata(L.) Cav. Growing Wild in Southern Puglia (Italy). Journal of Essential Oil Research, 19(6), 572-580. doi:10.1080/10412905.2007.9699335Salas, J. B., Téllez, T. R., Alonso, M. J. P., Pardo, F. M. V., de los Ángeles Cases Capdevila, M., & Rodríguez, C. G. (2010). Chemical composition and antioxidant activity of the essential oil ofThymbra capitata(L.) Cav. in Spain. Acta Botanica Gallica, 157(1), 55-63. doi:10.1080/12538078.2010.10516189Rodrigues, L. S., Monteiro, P., Maldoa-Martins, M., Monteiro, A., Povoa, O., & Teixeira, G. (2006). BIODIVERSITY STUDIES ON PORTUGUESE THYMBRA CAPITATA. Acta Horticulturae, (723), 127-132. doi:10.17660/actahortic.2006.723.13El Hadj Ali, I. B., Guetat, A., & Boussaid, M. (2012). Variation of Volatiles in Tunisian Populations of Thymbra capitata (L.) Cav. (Lamiaceae). Chemistry & Biodiversity, 9(7), 1272-1285. doi:10.1002/cbdv.201100344Katz, D. A., Sneh, B., & Friedman, J. (1987). The allelopathic potential ofCoridothymus capitatus L. (Labiatae). Preliminary studies on the roles of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes. Plant and Soil, 98(1), 53-66. doi:10.1007/bf02381727Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., & Lerner, H. R. (1999). Journal of Chemical Ecology, 25(5), 1079-1089. doi:10.1023/a:1020881825669Saoud, I., Hamrouni, L., Gargouri, S., Amri, I., Hanana, M., Fezzani, T., … Jamoussi, B. (2013). Chemical composition, weed killer and antifungal activities of Tunisian thyme (Thymus capitatusHoff. et Link.) essential oils. Acta Alimentaria, 42(3), 417-427. doi:10.1556/aalim.42.2013.3.15Chaimovitsh, D., Shachter, A., Abu-Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2016). Herbicidal Activity of Monoterpenes Is Associated with Disruption of Microtubule Functionality and Membrane Integrity. Weed Science, 65(1), 19-30. doi:10.1614/ws-d-16-00044.1Verdeguer, M., Castañeda, L. G., Torres-Pagan, N., Llorens-Molina, J. A., & Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules, 25(3), 562. doi:10.3390/molecules25030562Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J.-P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44-49. doi:10.1016/j.cropro.2016.04.016Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of Pesticides on Environment. Plant, Soil and Microbes, 253-269. doi:10.1007/978-3-319-27455-3_13Harker, K. N., & O’Donovan, J. T. (2013). Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technology, 27(1), 1-11. doi:10.1614/wt-d-12-00109.1Olson, S. (2015). An Analysis of the Biopesticide Market Now and Where it is Going. Outlooks on Pest Management, 26(5), 203-206. doi:10.1564/v26_oct_04Santamarina, M., Ibáñez, M., Marqués, M., Roselló, J., Giménez, S., & Blázquez, M. (2017). Bioactivity of essential oils in phytopathogenic and post-harvest fungi control. Natural Product Research, 31(22), 2675-2679. doi:10.1080/14786419.2017.1286479Tuttolomondo, T., Dugo, G., Leto, C., Cicero, N., Tropea, A., Virga, G., … La Bella, S. (2015). Agronomical and chemical characterisation ofThymbra capitata(L.) Cav. biotypes from Sicily, Italy. Natural Product Research, 29(14), 1289-1299. doi:10.1080/14786419.2014.997726Miguel, M. G., Gago, C., Antunes, M. D., Megías, C., Cortés-Giraldo, I., Vioque, J., … Figueiredo, A. C. (2015). Antioxidant and Antiproliferative Activities of the Essential Oils fromThymbra capitataandThymusSpecies Grown in Portugal. Evidence-Based Complementary and Alternative Medicine, 2015, 1-8. doi:10.1155/2015/851721Karousou, R., Koureas, D. N., & Kokkini, S. (2005). Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry, 66(22), 2668-2673. doi:10.1016/j.phytochem.2005.09.020Vasilakoglou, I., Dhima, K., Paschalidis, K., & Ritzoulis, C. (2013). Herbicidal potential onLolium rigidumof nineteen major essential oil components and their synergy. Journal of Essential Oil Research, 25(1), 1-10. doi:10.1080/10412905.2012.751054Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. doi:10.1016/j.ecoenv.2017.04.041Pinheiro, P. F., Costa, A. V., Alves, T. de A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., … Fontes, M. M. P. (2015). Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays. Journal of Agricultural and Food Chemistry, 63(41), 8981-8990. doi:10.1021/acs.jafc.5b03049Tworkoski, T. (2002). Herbicide effects of essential oils. Weed Science, 50(4), 425-431. doi:10.1614/0043-1745(2002)050[0425:heoeo]2.0.co;2Benvenuti, S., Cioni, P. L., Flamini, G., & Pardossi, A. (2017). Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Research, 57(5), 342-353. doi:10.1111/wre.12266N. MALPASSI, R. (2006). Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea. BIOCELL, 30(1), 51-56. doi:10.32604/biocell.2006.30.051Schreiber, L. (1995). A mechanistic approach towards surfactant/wax interactions: Effects of octaethyleneglycolmonododecylether on sorption and diffusion of organic chemicals in reconstituted cuticular wax of barley leaves. Pesticide Science, 45(1), 1-11. doi:10.1002/ps.2780450102Hull, H. M., Morton, H. L., & Wharrie, J. R. (1975). Environmental influences on cuticle development and resultant foliar penetration. The Botanical Review, 41(4), 421-452. doi:10.1007/bf02860832Kern, A. J., Jackson, L. L., & Dyer, W. E. (1997). Fatty acid and wax biosynthesis in susceptible and triallate-resistantAvena fatuaL. Pesticide Science, 51(1), 21-26. doi:10.1002/(sici)1096-9063(199709)51:13.0.co;2-9SANYAL, D., BHOWMIK, P. C., & REDDY, K. N. (2008). Effects of surfactants on primisulfuron activity in barnyardgrass (Echinochloa crus-galli [L.] Beauv.) and green foxtail (Setaria viridis [L.] Beauv.). Weed Biology and Management, 8(1), 46-53. doi:10.1111/j.1445-6664.2007.00273.xPrinciples of Soil and Plant Water Relations. (2014). doi:10.1016/c2013-0-12871-1Kim, H. K., Park, J., & Hwang, I. (2014). Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany, 65(7), 1895-1904. doi:10.1093/jxb/eru075Norris, R. F. (1974). PENETRATION OF 2,4-D IN RELATION TO CUTICLE THICKNESS. American Journal of Botany, 61(1), 74-79. doi:10.1002/j.1537-2197.1974.tb06029.xSchönherr, J., & Riederer, M. (1989). Foliar Penetration and Accumulation of Organic Chemicals in Plant Cuticles. Reviews of Environmental Contamination and Toxicology, 1-70. doi:10.1007/978-1-4613-8850-0_1GOURET, E., ROHR, R., & CHAMEL, A. (1993). Ultrastructure and chemical composition of some isolated plant cuticles in relation to their permeability to the herbicide, diuron. New Phytologist, 124(3), 423-431. doi:10.1111/j.1469-8137.1993.tb03832.xRiederer, M., & Schönherr, J. (1985). Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles. Ecotoxicology and Environmental Safety, 9(2), 196-208. doi:10.1016/0147-6513(85)90022-3Melo, C. R., Picanço, M. C., Santos, A. A., Santos, I. B., Pimentel, M. F., Santos, A. C. C., … Bacci, L. (2018). Toxicity of essential oils of Lippia gracilis chemotypes and their major compounds on Diaphania hyalinata and non-target species. Crop Protection, 104, 47-51. doi:10.1016/j.cropro.2017.10.013Araniti, F., Graña, E., Krasuska, U., Bogatek, R., Reigosa, M. J., Abenavoli, M. R., & Sánchez-Moreiras, A. M. (2016). Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance. PLOS ONE, 11(8), e0160202. doi:10.1371/journal.pone.0160202Smyth, D. R. (2016). Helical growth in plant organs: mechanisms and significance. Development, 143(18), 3272-3282. doi:10.1242/dev.134064Graña, E., Costas-Gil, A., Longueira, S., Celeiro, M., Teijeira, M., Reigosa, M. J., & Sánchez-Moreiras, A. M. (2017). Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 218, 45-55. doi:10.1016/j.jplph.2017.07.007Verbelen, J.-P., Le, J., Vissenberg, K., De Cnodder, T., Vandenbussche, F., Sugimoto, K., & Van Der Straeten, D. (2008). Microtubules And The Control Of Cell Elongation In Arabidopsis Roots. NATO Science for Peace and Security Series C: Environmental Security, 73-90. doi:10.1007/978-1-4020-8843-8_4Blume, Y. B., Krasylenko, Y. A., & Yemets, A. I. (2012). Effects of phytohormones on the cytoskeleton of the plant cell. Russian Journal of Plant Physiology, 59(4), 515-529. doi:10.1134/s1021443712040036López-González, D., Costas-Gil, A., Reigosa, M. J., Araniti, F., & Sánchez-Moreiras, A. M. (2020). A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiology and Biochemistry, 151, 378-390. doi:10.1016/j.plaphy.2020.03.047The International Herbicide-Resistant Weed Databasewww.weedscience.orgAngelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., & Flamini, G. (2003). Essential Oils from Mediterranean Lamiaceae as Weed Germination Inhibitors. Journal of Agricultural and Food Chemistry, 51(21), 6158-6164. doi:10.1021/jf0210728DÍAZ-TIELAS, C., GRAÑA, E., SOTELO, T., REIGOSA, M. J., & SÁNCHEZ-MOREIRAS, A. M. (2012). The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant, Cell & Environment, 35(8), 1500-1517. doi:10.1111/j.1365-3040.2012.02506.
Tecniche di campionamento di sostanze bioattive da aculei di Scorpaena porcus
Nel presente report vengono descritte le tecniche utilizzate per l'estrazione del veleno dagli aculei della specie ittica Scorpaena porcus. Gli estratti grezzi ottenuti sono successivamente processati al fine di ottenere frazioni da
utilizzare in saggi biochimici, per lo studio di possibili attività biologiche
- …