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Abstract

In recent years a non-neuronal cholinergic system has been described in immune cells,

which is often usually activated during the course of inflammatory processes. To date, it is

known that Acetylcholine (ACh), a neurotransmitter extensively expressed in the airways,

not only induces bronchoconstriction, but also promotes a set of changes usually associated

with the induction of allergic/Th2 responses. We have previously demonstrated that ACh

polarizes human dendritic cells (DC) toward a Th2-promoting profile through the activation

of muscarinic acetylcholine receptors (mAChR). Here, we showed that ACh promotes the

acquisition of an inflammatory profile by murine DC, with the increased MHC II IAd expres-

sion and production of two cytokines strongly associated with inflammatory infiltrate and

tissue damage, namely TNF-α and MCP-1, which was prevented by blocking mAChR.

Moreover, we showed that ACh induces the up-regulation of M3 mAChR expression and

the blocking of this receptor with tiotropium bromide prevents the increase of MHC II IAd

expression and TNF-α production induced by ACh on DC, suggesting that M3 is the main

receptor involved in ACh-induced activation of DC. Then, using a short-term experimental

murine model of ovalbumin-induced lung inflammation, we revealed that the intranasal

administration of ACh-treated DC, at early stages of the inflammatory response, might be

able to exacerbate the recruitment of inflammatory mononuclear cells, promoting profound

structural changes in the lung parenchyma characteristic of chronic inflammation and evi-

denced by elevated systemic levels of inflammatory marker, TNF-α. These results suggest

a potential role for ACh in the modulation of immune mechanisms underlying pulmonary

inflammatory processes.
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Introduction

Because the lung is an organ that is largely exposed to microenvironmental stimuli such as

microbes, allergens and pollution, the local presence of antigen-presenting cells, such as den-

dritic cells (DC), is crucial for the initiation and maintenance of mucosal immunity in the

respiratory tract. It is known that stimulated DC are essential for resting T cell activation and

their differentiation into distinct functional profiles. Besides pathogen-associated molecular

patterns and cytokines, other stimuli are capable to modulate DC function [1].

In recent years it has become evident there is interaction between the nervous and immune

systems [2–4]. A non-neuronal cholinergic system has been described in immune cells, which

is usually activated during the course of inflammatory processes [5–7]. Acetylcholine (ACh)

represents the most important neurotransmitter of the parasympathetic nervous system. This

molecule is largely expressed in the airways, where it induces smooth muscle contraction [5,8].

For this reason, anticholinergic drugs are commonly used as bronchodilators in obstructive

airway diseases. Interestingly, recent studies revealed that ACh not only induces bronchocon-

striction, but also promotes eosinophilia, mucus overproduction and airway remodeling, a set

of changes usually associated with the induction of allergic/Th2 responses [8]. Moreover, we

have recently demonstrated that ACh polarizes DC toward a Th2-promoting profile through

the activation of muscarinic acetylcholine receptors (mAChR) [9]. In addition, Bühling et al
have shown that ACh-induced release of chemotactic mediators from inflammatory cells

could be inhibited by tiotropium bromide (Tio), a selective M3 mAChR antagonist [10].

Here, we found that ACh supports a pro-inflammatory response acting on DC. Using a

short-term model of ovalbumin (OVA)-induced lung inflammation, we revealed that the

intranasal (i.n.) administration of ACh-treated DC might be able to exacerbate this inflamma-

tory response, increasing lung injury by the induction of mononuclear cell recruitment.

Methods

2.1. Mice

All experiments were carried out using 2-month-old virgin female BALB/c or C57BL/6 mice

raised at the Instituto de Medicina Experimental (IMEX), CONICET, Academia Nacional de

Medicina, Buenos Aires, Argentina. They were housed six per cage and kept at 20˚ ± 2˚ under

an automatic 12 h light–dark schedule, according to the National Institute of Health guide-

lines. All experimental protocols used in this research were approved by Institutional Animal

Care and Use Committee of IMEX, according to American Physiological Society’s Guiding

Principles for the Care and Use of Animals in Research and following local normative

regulations.

2. 2. DC generation from bone marrow cultures

DC were differentiated from BALB/c bone marrow precursors, as described by Inaba et al
[11], with minor modifications reported previously [12]. Briefly, the precursors were cultured

at 1 x 106 cells/ml in RPMI-1640 complete medium, supplemented with 30% conditioned

medium from GM-CSF-producing J558 cells. Upon differentiation, DC were incubated (1 x

106 cells/ml) with or without different concentrations of ACh (Sigma Aldrich, St. Louis, MO,

USA) for 18 h, and phenotypic changes were analyzed. In some experiments, DC were pre-

incubated for 30 min with or without the nonselective mAChR and nicotinic (nAChR) antago-

nists, atropine (AT 10-9M, Laboratorio Larjan, Bs. As., Argentina) and mecamylamine (MM

10-9M, Sigma Aldrich), respectively. In some cases, DC were pre-incubated with a selective M3

mAChR antagonist, Tio (30nM, Boehringer Ingelheim). DC treated with lipopolysaccharide
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or LPS (from E. coli 0111:B4, Sigma Aldrich) 1 μg/ml for 18h were used as positive control of

cell activation. Cell viability of cultures was evaluated by trypan blue exclusion dye assay.

2.3. Mixed leukocyte reaction (MLR)

DC (5 x 104 cells) differentiated from bone marrow precursors obtained from BALB/c mice

were treated or untreated with ACh (ACh-DC or DC; respectively), then washed and co-cul-

tured with splenocytes from C57BL/6 mice (1:5 ratio) for 5 days. Proliferation was determined

by thymidine incorporation measured as described in [9].

2. 4. Sensitization and challenge of mice with OVA

An experimental model of ovalbumin (OVA)-induced lung inflammation was performed in

BALB/c mice as previously described [12–14], with minor modifications (Fig 1). Four experi-

mental mice groups were used in this study. Briefly, at day 0, DC untreated or treated with

ACh 10-11M for 18 h were washed and transferred via the i.n. route (5x104 DC/100 μl PBS) to

groups I and II, respectively. In parallel, mice in groups III and IV received PBS (100 μl PBS),

instead of DC. Ten minutes after i.n. instillation of DC (groups I and II) or PBS (groups III

and IV), all groups received OVA-sodium aluminate (Alum) solution (50 μg OVA and 1 mg

Alum/500 μl PBS, Sigma Aldrich) intraperitoneally (i.p.). Finally, on days 7, 9, and 11, groups

I, II and III were challenged with OVA (0.1 μg/50 μl PBS) via the i.n. route, while group IV

(control) received PBS instead of OVA. All groups were sacrificed on day 14 by cervical dislo-

cation resulting in euthanasia within 10 seconds and serum samples were obtained as previ-

ously described in [12].

2.5. Lung pathology

The isolated lungs were inflated with 4% paraformaldehyde-PBS prior to immersion fixation

for 24 h and paraffin-embedded. Four-micron sections were stained with haematoxylin and

eosin (H&E) and periodic acid-Schiff (PAS). Representative microphotographs were obtained

with a Zeiss Axiolab microscope. For peribronchial mononuclear infiltrate quantification,

inflammatory cells were counted at x40 magnification in at least ten fields on sections stained

Fig 1. Schematic experimental design of OVA-induced lung inflammation murine model. Our experiments

involved the use of 4 different mice groups (4 mice/group), as described in Methods. In all cases, mice were sacrificed

at day 14 and the lungs were isolated for analysis.

https://doi.org/10.1371/journal.pone.0212911.g001
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with H&E. Results were expressed as fold increase. Alveolar involvement was evaluated

according to a scoring system adapted from Bayes et al 2016 [15] (Table 1). Lung sections

stained with PAS were examined at x10 magnification in both central and peripheral airways

with epithelial layer intact for evaluate the area proportion of mucus. The difference between

luminal area with and without mucus was determined using microscope software platform

Leica Application Suite (LAS4). Results were expressed as % and the mean ± SEM was calcu-

lated for each experimental group.

2.6. Treatment of lungs to obtain cell suspension

Lungs were cut into small pieces and treated with Type I collagenase and DNase I, as described

previously [12]. The cell suspensions were collected through a gauze mesh and washed with

cold PBS.

2.7. Evaluation of serum levels of IgE antibodies directed to ovalbumin

Ovalbumin-specific IgE antibody levels were determined from serum samples using a rat anti-

mouse IgE (BD Biosciences) as described previously in [12].

2.8. Cytokines determination by ELISA

Cytokines were evaluated using commercial kits: TNF-α, MCP-1 (e-Biosciences, San Diego,

CA, USA), IL-12p70 and IL-10 (BD Biosciences), according to the manufacturer’s

recommendations.

2.9. Flow cytometry

Cell staining was performed using FITC- or PE-conjugated monoclonal antibodies directed to

CD11c, MHC II IAd, Gr-1, CD86, CD11b, CD4, CD8, B220 or the corresponding isotype con-

trol (BD Biosciences), according to the manufacturer’s recommendations. The expression of

M3 mAChR was evaluated using specific goat IgG polyclonal antibody (Santa Cruz Biotech-

nology, Germany) and secondary Alexa 488-labeled polyclonal IgG antibody directed to goat

IgG (Sigma Aldrich) as previously described in [9]. The data were collected using a BD FACS-

Calibur flow cytometer (BD Biosciences) and analysis was performed using the FlowJo 7.6

software.

2. 10. Statistical analysis

Statistical significance was determined using the nonparametric Friedman test or Kruskal–

Wallis test with Dunn’s post-test analysis for multiple comparisons and Wilcoxon test for

Table 1. Histological scoring system for inflammation in lungs of mice treated with DC and ACh-DC.

Score Alveolar Involvement

0 None

1 Mild (patchy increased cellularity without septal thickening)

2 Moderate (increased cellularity with septal thickening)

3 Severe (25–50% visualized lung with increased cellularity/thickening)

4 Diffuse (>50% visualized lung with increased cellularity/thickening)

Randomly, selected sections were scored blindly according to the review of a complete lung section, using an x10

magnification. Adapted from Bayes et al 2016 [15].

https://doi.org/10.1371/journal.pone.0212911.t001
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simple comparisons. Statistical significance was defined as p<0.05 with GraphPad Prism 6

software (San Diego, CA, USA).

Results and discussion

We aimed to evaluate whether ACh acting on DC affects the early development of the inflam-

matory response in the lung, and based on our previous results in human DC [9,16], we first

assessed whether this neurotransmitter is able to modulate the phenotypic and functional pro-

file of murine DC. For this, we differentiated DC from bone marrow precursors and at day 9

of culture, we corroborated that over 85% of the harvested cells were MHC class II IAd+/

CD11c+ and that the contamination with granulocytes (GR-1+CD11c- cells) was less than 1%,

as shown in Fig 2A. Next, DC were cultured for 18 h with or without different concentrations

of ACh and DC treated with ACh 10-11M showed the higher increase of the expression of

Fig 2. ACh increases the expression of MHC class II and the stimulatory ability of murine DC. (A) Phenotype of

immature DC differentiated from bone marrow precursors from BALB/c mice was analyzed by flow cytometry. A

representative experiment is shown. (B-C) DC (1x106 cells/ml) were treated or not with different concentrations of

ACh or LPS 1μg/ml for 18h and the expression of MHC class II (anti-IAd) was evaluated by flow cytometry (B), while

CD86 expression (C) was evaluated on ACh 10−11 M-treated DC. Representative histograms of median intensity of

fluorescence (MIF) are shown and bars represent the mean ± SEM of 5–7 experiments (2 replicates/experiment).
�p<0.05, ��p<0.01 vs untreated DC, nonparametric Friedman test. (D) ACh 10−11 M-treated-DC and DC (5x104 cells)

were washed and co-cultured with C57BL/6 splenocytes (1:5 ratio) for 5 days. The proliferation was determined by

thymidine incorporation and data are expressed as the mean ± SEM of [3H] thymidine incorporation (n = 5

experiments, 2 replicates/experiment). �p<0.05, nonparametric Wilcoxon test.

https://doi.org/10.1371/journal.pone.0212911.g002

Acetylcholine and bone marrow-derived dendritic cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0212911 March 1, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0212911.g002
https://doi.org/10.1371/journal.pone.0212911


MHC class II IAd, as shown in Fig 2B (a positive control of DC activation with LPS is shown),

while CD86 expression was not affected (Fig 2C). As shown in Fig 2D, the treatment of DC

with ACh resulted in enhanced proliferation of C57BL/6 splenocytes in MLR.

Then, similarly to described in human DC [9], we found that ACh markedly stimulated the

production of TNF-α (a positive control with LPS is shown in S1 Fig) without modifying the

spontaneous production of IL-12p70 and IL-10 (Fig 3C and 3D). Surprisingly, we found that

ACh also significantly increased the secretion of CCL2/MCP-1 chemokine (Fig 3B).

Because DC express both m- and nAChR [6,7], we then analyzed which of these receptors

was involved in the promotion of the observed effects. To this aim, we used nonselective m-

and nAChR antagonists: AT and MM, respectively. Fig 4A–4C shows that AT, but not MM,

significantly prevented the ACh-induced increment of MHC II IAd expression and TNF-α
and MCP-1 production, suggesting the involvement of mAChR in DC stimulation by ACh, as

we previously observed in human DC [9].

In agreement with our results, several in vitro and in vivo studies support the fact that ACh,

acting on mAChR, exerts a pro-inflammatory role on airway immune and nonimmune cells

[17–19] and contributes to airway inflammation, Th2 cytokines production and remodeling in

obstructive airway diseases, primarily via M3 receptor [8,20]. Also it has been shown that by

blocking mAChR with nonselective (AT) or selective to M3 (Tio or 4-DAMP) antagonists, it is

possible to prevent these effects observed in vitro and in asthma models [8,10,20,21]. Bühling

et al [10] reported that ACh-stimulated alveolar macrophages, monocytes and bronchial epi-

thelial cells enhanced the release of chemotactic active mediators which was prevented by Tio.

On the contrary, this effect was not observed in lung fibroblasts, associated with the lower

amount of M3 expression and a predominance of M2, a mAChR associated with inhibitory

Fig 3. ACh enhances the production of pro-inflammatory cytokines on murine DC. (A-D) DC (1x106 cells/ml)

were incubated with or without ACh 10−11 M for 18 h. TNF-α (A), MCP-1 (B), IL-12p70 (C) and IL-10 (D) secretion

was measured by ELISA (mean ± SEM, n = 4 experiments). �p<0.05; ��p<0.01 nonparametric Wilcoxon test.

https://doi.org/10.1371/journal.pone.0212911.g003

Fig 4. ACh-induced activation of DC is mediated by mAChR. (A-C) DC (1x106 cells/ml) were exposed or not to

cholinergic receptors antagonists (AT and MM, 10-9M for 30 m) and then were incubated with or without ACh 10−11

M for 18 h. MHC Class II IAd expression (A) was measured by flow cytometry and a representative histogram of MIF

of n = 6 experiments is shown (mean ± SEM, 2 replicates/experiment). (B-C) TNF-α (B) and MCP-1 (C) secretion was

measured by ELISA (mean ± SEM, n = 4 experiments). �p<0.05, nonparametric Kruskal-Wallis for multiple

comparisons with Dunn’s post-test. A. U.: arbitrary units.

https://doi.org/10.1371/journal.pone.0212911.g004
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functions [22]. Furthermore, Profita et al [23] showed that M2 expression is significantly

decreased in macrophages and neutrophils of COPD patients sputum, contrary to M3

expression.

In line with these reports, we observed that M3 expression on bone-marrow DC is signifi-

cantly up-regulated by ACh (Fig 5A). Moreover, when DC were pre-treated with Tio, the

ACh-induced increase of MHC II IAd expression and TNF-α production was significantly pre-

vented (Fig 5B and 5C, respectively). Notably, pre-treatment with Tio reached similar blockade

levels compared to pre-treatment with the nonselective mAChR antagonist, AT, suggesting

that M3 might be the main receptor involved in ACh-induced activation of DC.

It is well established the use of Tio as a long-acting M3 muscarinic antagonist that exerts a

bronchodilator effect on the airway, but taking the above-mentioned points into account, we

infer that Tio could contribute to the decrease of the exacerbation rate observed in COPD and

severe persistent asthma treated patients [24,25], acting also on inflammatory response.

In sharp contrast to the pro-inflammatory role of mAChR stimulation, nAChRs appear to

play an important anti-inflammatory role in many cell types and organs. This immunosup-

pressive effect has been well established in DC, monocytes, macrophages, endothelial cells and

neutrophils [26–32], with a decrease in the production of pro-inflammatory cytokines such as

TNF-α [32].

Taken together, these results suggest that ACh modulates the phenotype and function of

mouse and human DC in a similar fashion, inducing them to a pro-inflammatory profile

mediated by mAChR signaling, mainly the M3 receptor.

Finally, we evaluated the impact of ACh-treated DC on the early inflammatory response,

using a short-term experimental model of OVA-induced lung inflammation [13,14], with

minor modifications illustrated in Fig 1.

Interestingly, the histopathological analysis of lung from OVA-challenged mice revealed

that mononuclear cell infiltration was higher in the lungs from mice instilled with ACh-DC

(group II) compared with mice instilled with untreated-DC (group I), while a low infiltration

pattern was observed in mice instilled with PBS (group III) (Fig 6A, upper panel). Moreover,

the massive infiltration of mononuclear cells observed in group II was shown to be associated

to septal thickening and decreased lumen with loss of distal air space and normal structure of

bronchioles, due to epithelial damage. These changes were less pronounced in mice receiving

untreated DC (Fig 6A, upper and middle panels). Cell desquamation, epithelial cell hyperplasia

and metaplasia of mucus secreting cells, as well as the amount of secreted mucus, was higher

in lungs from group II compared with those treated with group I (Fig 6A, lower panel). The

increase in peribronchial mononuclear infiltration, alveolar involvement and mucus produc-

tion observed in group II was significant compared to group I, as shown in Fig 6B and 6C.

Fig 5. M3 mAChR is involved in ACh-induced activation of DC. (A-C) DC (1x106 cells/ml) were exposed or not to

selective M3 receptor antagonist (Tio 30nM for 30 m) and then were incubated with or without ACh 10−11 M for 18 h.

M3 (A) and MHC II IAd (B) expression was determined by flow cytometry and representative histograms of MIF of 5

experiments are shown (mean ± SEM, 2 replicates/experiment). TNF-α production (C) was measured by ELISA

(mean ± SEM, n = 4 experiments). �p<0.05, nonparametric Wilcoxon test.

https://doi.org/10.1371/journal.pone.0212911.g005

Acetylcholine and bone marrow-derived dendritic cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0212911 March 1, 2019 7 / 14

https://doi.org/10.1371/journal.pone.0212911.g005
https://doi.org/10.1371/journal.pone.0212911


Fig 6. ACh-DC facilitates the development of inflammatory process in onset of OVA-induced lung inflammation

murine model. (A) H&E (upper and middle panels) and PAS staining (lower panel) of fixed lungs from mice of

groups I-III are shown. In the upper panel, the full arrows indicate the alveolar septum (x50 magnification). In the

middle panel the ellipses indicate peribronchiolar mononuclear infiltrate, the black arrows indicate epithelial damage

and the insert in group II shows the recruitment of mononuclear cells into blood vessel (x400 magnification). In the

lower panel, the full arrows indicate PAS positive cells, the black arrows indicate mucin secretion while the orange

arrows indicate epithelial desquamation (x400 magnification). Al: Alveolus, V: Blood vessel, Br: Bronchus, Brl:

Bronchiole. A representative experiment is shown (n = 4). (B) Peribronchial mononuclear infiltrate was quantified at

x40 magnification in at least ten fields on sections stained with H&E and results are expressed as mean ± SEM of fold

increase (B, left panel) while the alveolar involvement was evaluated according to a scoring system described in

Methods (B, right panel). (C) Lung sections stained with PAS were examined at x10 magnification and the area

proportion of mucus in % (mean ± SEM) was determinate as described in Methods. �p<0.05; ���p<0.001

nonparametric Wilcoxon test, n = 4 experiments.

https://doi.org/10.1371/journal.pone.0212911.g006
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Furthermore, we observed a significant increase in the population of CD11b+CD11c- cells

in lungs of group II respect to the group I (Fig 7A and 7B). No differences were observed in

CD4+, CD8+ or B220+ cells as shown in S2 Fig. These results were consistent with those of

Gonzalo et al [14,33] which showed that at day 15 of an OVA-induced lung inflammation

model, the main population of lung-infiltrating immune cells was monocytic/macrophagic

while the lymphocytic was the lowest. Related to this, we observed a similarly low level of cir-

culating anti-OVA IgE antibodies at the end of the in vivo model in all of OVA-instillated

groups (Fig 7C), accordingly with reports of Gonzalo et al [14].

Taken together, these results suggest that the i.n. administration of ACh-DC promotes pro-

found structural changes in the lung parenchyma during the development of a short-term

model of OVA-induced lung inflammation, some of these characteristic of inflammatory

chronic stage [34].

Several reports have shown that lung damage and dysfunction are associated with inflam-

matory infiltrate and mediators produced by it, during allergic inflammation [34]. Moreover,

besides macrophage and DC activity in lungs as antigen-presenting cells, they may lead,

directly or indirectly, to the secretion of cytokines that initiate phenotypic changes in the air-

way epithelium [14,34]. In agreement with this, we have shown here that ACh-treated DC pro-

duced a higher amount of acute mediators of inflammation, such as TNF-α and CCL2/MCP-

1, associated with some of the initial characteristics of inflammatory processes: increased vas-

cular permeability, monocyte recruitment and tissue damage [14,35]. Moreover, TNF-α is

exacerbated in airways of asthmatic patients and contributes to the development of airway

remodeling [35]. Also, it was demonstrated that this cytokine can reach a high serum level in

Fig 7. ACh-DC induces the recruitment of CD11b+CD11c- cells in the onset of OVA-induced lung inflammation

accompanied by increased TNF-α production. (A-B) Cells isolated from lungs were stained with mAb directed to

CD11c and CD11b and analyzed by flow cytometry, gating mononuclear cells and excluding for the analysis the High

Autofluorescence Cells. A representative experiment (A) and the quantification of CD11b+CD11c- and

CD11b-CD11c+ cells (B) are shown (mean % ± SEM, n = 4 experiments). (C-D) Level of circulating anti-OVA IgE

antibodies (C) and TNF-α (D) was measured at the end of the in vivo model in mice serum samples of day 14 by

ELISA (mean ± SEM, n = 4 experiments). (C) A representative experiment is shown (OD media ± SEM, n = 4 animals/

group). �p<0.05 nonparametric Wilcoxon test.

https://doi.org/10.1371/journal.pone.0212911.g007
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patients with severe asthma and it has been suggested as marker of “systemic” inflammation

[36,37]. Related to this, some experimental studies in asthma models have reported that some

agents inhibiting the synthesis and activity of TNF-α as well as blocking agents of this cytokine

decreased/suppressed the airway inflammation and improved the lung histopathology [35].

These above-mentioned reports are consistent with our results shown here; we found a

higher TNF-α in vivo production at the end of the model (14 days after instillation of DC) in

mice instillated with ACh-treated DC respect to mice instillated with untreated DC (Fig 7D),

supports the impact of cholinergic activation of DC on the onset of airway inflammatory

response, which is capable of exacerbating it and promoting lung injury by the induction of

mononuclear cell recruitment. Our results could contribute to better understanding the onset

of the inflammatory response that leads to the increase of TNF-α observed in airways and sera

of asthmatic patients.

In agreement with our results, Gonzalo et al showed that monocytes/macrophages are the first

cells accumulated at early stages of OVA-induced lung inflammation [13,14,33], and that their

recruitment is mainly dependent on the local production of CCL-2/MCP-1 in lungs [13,14]. Inter-

estingly, the neutralization of this chemokine at the beginning of the inflammatory process has

been showed to reduce bronchial hyperresponsiveness associated to a strongly decrease not only

in monocytes/macrophages but also in lymphocytes and eosinophils recruitment [14]. These find-

ings support the key role of CCL-2/MCP-1 acting up-stream of the inflammatory response.

There is no doubt about the relevance of the neuronal cholinergic system in the regulation

of airways [38]. It is known that the parasympathetic neuronal network penetrates deep into

the airway wall, affecting the bronchoconstriction and the mucus release from submucosal

glands, and in lesser degree, from goblet cells in the airway epithelium [39]. However, neuro-

nal system is not the only source of ACh in the airways. The nonneuronal ACh synthesis sys-

tem has been detected on various cells types, such as epithelial, fibroblasts and inflammatory

cells [5,38].

In lungs, the synthesis and the release of non-neuronal ACh occur in inflammatory pro-

cesses [40–43] as well as in homeostatic regulation [44], stimulating cholinergic receptors in

both autocrine or paracrine manner [38]. Moreover, different immune cells such as macro-

phages, B and T lymphocytes [7] and even DC [6,16] express choline acetyltransferase or

ChAT, the enzyme responsible of ACh synthesis. The ChAT expression in all of them was con-

firmed with the recently developed Fluorescent ChAT-Reporter Protein transgenic mice

[4,45–48]. Particularly, Koarai et al. [21] reported the expression of ChAT mRNA in human

lung and alveolar macrophages and monocytes.

Taking this background account, we suppose that at the beginning of lung inflammatory

disease, the ACh released by airway epithelial and resident immune cells could be relevant in

the DC activation and moreover, the production of ACh by recruited immune cells might con-

tribute to the inflammatory response perpetuation.

Conclusion

Our results suggest that ACh promotes the acquisition of an inflammatory profile on murine

DC through mAChR, which is characterized by an enhanced expression of MHC II as well as

an increased production of TNF-α and MCP-1, both strongly associated with inflammatory

infiltrate and tissue damage in several pathologies. Interestingly, our observations made in a

short-term experimental model of OVA-induced lung inflammation reveal that the early

instillation of ACh-treated DC promotes increased lung injury that reaches systemic levels of

inflammation compared to untreated DC, suggesting a potential role for ACh in the modula-

tion of immune mechanisms underlying pulmonary inflammatory process.
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Supporting information

S1 Fig. TNF-α production of maturated bone marrow-derived DC. DC (1x106 cells/ml)

were incubated with or without 1μg/ml LPS for 18 h. TNF-α secretion was measured by ELISA

(mean ± SEM, n = 4 experiments). �p<0.05 Wilcoxon test.

(TIF)

S2 Fig. ACh-DC not modulates CD4+, CD8+ and B220+ cell population in OVA-induced

lung inflammation. Cells isolated from lungs were stained with mAb directed to CD4 and

CD8 (A) or B220 (B) and analyzed by flow cytometry, gating mononuclear cells and excluding

for the analysis the High Autofluorescence Cells. Representative experiments are shown

(N = 2).

(TIF)
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Bone Marrow-Derived Pro-Inflammatory Monocyte Production and Survival. 2016; 1–18. https://doi.

org/10.1371/journal.pone.0150230 PMID: 26925951

32. Matsunaga K, Klein TW, Friedman H, Yamamoto Y. Involvement of nicotinic acetylcholine receptors in

suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella

pneumophila infection by nicotine. J Immunol. United States; 2001; 167: 6518–6524. PMID: 11714820

33. Gonzalo JA, Lloyd CM, Kremer L, Finger E, Martinez-A C, Siegelman MH, et al. Eosinophil recruitment

to the lung in a murine model of allergic inflammation: The role of T cells, chemokines, and adhesion

receptors. J Clin Invest. 1996; 98: 2332–2345. https://doi.org/10.1172/JCI119045 PMID: 8941651

34. Blyth DI, Pedrick MS, Savage TJ, Hessel EM, Fattah D. Lung Inflammation and Epithelial Changes in a

Murine Model of Atopic Asthma. Am J Respir Cell Mol Biol. 1996; 14: 425–438. https://doi.org/10.1165/

ajrcmb.14.5.8624247 PMID: 8624247

35. Catal F, Mete E, Tayman C, Topal E, Albayrak A, Sert H. A human monoclonal anti-TNF alpha antibody

(adalimumab) reduces airway inflammation and ameliorates lung histology in a murine model of acute

asthma. Allergol Immunopathol (Madr). SEICAP; 2015; 43: 14–18. https://doi.org/10.1016/j.aller.2013.

11.002 PMID: 24882395

36. Golikova EA, Lopatnikova JA, Kovalevskaya-Kucheryavenko TV, Nepomnyashih VM, Sennikov SV.

Levels of TNF, TNF autoantibodies and soluble TNF receptors in patients with bronchial asthma. J

Asthma. 2013; 50: 705–711. https://doi.org/10.3109/02770903.2013.796972 PMID: 23638975

37. Silvestri M, Bontempelli M, Giacomelli M, Malerba M, Rossi GA, Di Stefano A, et al. High serum levels

of tumour necrosis factor-α and interleukin-8 in severe asthma: Markers of systemic inflammation? Clin

Exp Allergy. 2006; 36: 1373–1381. https://doi.org/10.1111/j.1365-2222.2006.02502.x PMID: 17083347

38. Koarai A, Ichinose M. Possible involvement of acetylcholine-mediated in fl ammation in airway dis-

eases. Allergol Int. Elsevier B.V; 2018; 67: 460–466. https://doi.org/10.1016/j.alit.2018.02.008 PMID:

29605098

39. Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of

asthma and COPD. Respir Res. 2006; 7: 73. https://doi.org/10.1186/1465-9921-7-73 PMID: 16684353

40. Profita M, Bonanno A, Siena L, Ferraro M, Montalbano AM, Pompeo F, et al. Acetylcholine mediates

the release of IL-8 in human bronchial epithelial cells by a NFkB/ERK-dependent mechanism. Eur J

Pharmacol. Netherlands; 2008; 582: 145–153. https://doi.org/10.1016/j.ejphar.2007.12.029 PMID:

18242599

41. Profita M, Albano GD, Montalbano AM, Di Sano C, Anzalone G, Gagliardo R, et al. Acetylcholine leads

to signal transducer and activator of transcription 1 (STAT-1) mediated oxidative/nitrosative stress in

human bronchial epithelial cell line. Biochim Biophys Acta—Mol Basis Dis. 2013; 1832: 1949–1958.

https://doi.org/10.1016/j.bbadis.2013.06.009 PMID: 23811074

42. Profita M, Albano GD, Riccobono L, Di Sano C, Montalbano AM, Gagliardo R, et al. Increased levels of

Th17 cells are associated with non-neuronal acetylcholine in COPD patients. Immunobiology. Elsevier

GmbH.; 2014; 219: 392–401. https://doi.org/10.1016/j.imbio.2014.01.004 PMID: 24529390

43. Profita M, Bonanno A, Montalbano AM, Ferraro M, Siena L, Bruno A, et al. Cigarette smoke extract acti-

vates human bronchial epithelial cells affecting non-neuronal cholinergic system signalling in vitro. Life

Sci. 2011; 89: 36–43. https://doi.org/10.1016/j.lfs.2011.04.025 PMID: 21620875
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