51 research outputs found

    The expansion asymmetry and age of the Cassiopeia A supernova remnant

    Get PDF
    HST images of the young supernova remnant Cas A are used to explore the expansion and spatial distribution of its highest velocity debris. ACS WFC images taken in 2004 March and December with Sloan F625W, F775W, and F850LP filters were used to identify 1825 high-velocity, outlying ejecta knots through measured proper motions of 0."35 - 0."90 yr(-1), corresponding to V-trans = 5500-14,500 km s(-1) assuming d = 3.4 kpc. The distribution of derived transverse expansion velocities for these ejecta knots shows a striking bipolar asymmetry with the highest velocity knots (V-trans >= 10,500 km s(-1)) confined to nearly opposing northeast and southwest "jets'' at P.A. = 45 degrees-70 degrees and 230 degrees-270 degrees, respectively. The jets have about the same maximum expansion velocity of similar or equal to 14,000 km s(-1) and appear kinematically and chemically distinct in that they are the remnant's only S-rich ejecta with expansion velocities above the 10,000-11,000 km s(-1) exhibited by outer nitrogen-rich ejecta, which otherwise represent the remnant's highest velocity debris. In addition, we find significant gaps in the spatial distribution of outlying ejecta in directions that are approximately perpendicular to the jets (P.A. = 145 degrees-200 degrees and 335 degrees-350 degrees). The remnant's central X-ray point source lies some 700 to the southeast of the estimated expansion center ( P.A. = 169 degrees +/- 8.degrees 4) indicating a projected motion toward the middle of the broad southern ejecta knot gap. Extrapolations of measured 9 month proper motions for all 1825 outer ejecta knots and a selected subsample of 72 bright and compact knots suggest explosion dates (assuming no knot deceleration) of 1662 +/- 27 and 1672 +/- 18, respectively. We find some evidence for nonuniform deceleration in different directions around the remnant and find 126 knots located along the northwestern limb among the least decelerated ejecta, suggesting a convergence date of 1681 +/- 19. A remnant age of around 325 yr would imply a +/- 350 km s(-1) transverse velocity for the central X-ray point source

    The next generation of training for arabidopsis researchers: Bioinformatics and Quantitative Biology

    Get PDF
    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (Provart et al., 2016). Due to an extremely well-annotated genome and advances in high-throughput sequencing, our understanding of this organism and other plant species has become even more intricate and complex. Computational resources, including CyVerse,3 Araport,4 The Arabidopsis Information Resource (TAIR),5 and BAR,6 have further facilitated novel findings with just the click of a mouse. As we move toward understanding biological systems, Arabidopsis researchers will need to use more quantitative and computational approaches to extract novel biological findings from these data. Here, we discuss guidelines, skill sets, and core competencies that should be considered when developing curricula or training undergraduate or graduate students, postdoctoral researchers, and faculty. A selected case study provides more specificity as to the concrete issues plant biologists face and how best to address such challenges

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Enduring Effects of Paternal Deprivation in California Mice (Peromyscus californicus): Behavioral Dysfunction and Sex-Dependent Alterations in Hippocampal New Cell Survival

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Early-life experiences with caregivers can significantly affect offspring development in human and non-human animals. While much of our knowledge of parent-offspring relationships stem from mother-offspring interactions, increasing evidence suggests interactions with the father are equally as important and can prevent social, behavioral, and neurological impairments that may appear early in life and have enduring consequences in adulthood. In the present study, we utilized the monogamous and biparental California mouse (Peromyscus californicus). California mouse fathers provide extensive offspring care and are essential for offspring survival. Non-sibling virgin male and female mice were randomly assigned to one of two experimental groups following the birth of their first litter: (1) biparental care: mate pairs remained with their offspring until weaning; or (2) paternal deprivation (PD): paternal males were permanently removed from their home cage on postnatal day (PND) 1. We assessed neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and female young adult offspring. While all biparentally-reared mice survived to weaning, PD resulted in a ~35% reduction in survival of offspring. Despite this reduction in survival to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or into young adulthood. A sex-dependent effect of PD was observed on new cell survival in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female, but not male, mice. While PD did not alter classic measures of anxiety-like behavior during the elevated plus maze task, exploratory behavior was reduced in PD mice. This observation was irrespective of sex. Additionally, PD increased some passive stresscoping behaviors (i.e., percent time spent immobile) during the forced swim task—an effect that was also not sex-dependent. Together, these findings demonstrate that, in a species where paternal care is not only important for offspring survival, PD can also contribute to altered structural and functional neuroplasticity of the hippocampus. The mechanisms contributing to the observed sex-dependent alterations in new cell survival in the dentate gyrus should be further investigated

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Drop the Needle; A Temperature Stable Oral Tablet Vaccine Is Protective against Respiratory Viral Pathogens

    No full text
    To effectively combat emerging infections and prevent future pandemics, next generation vaccines must be developed quickly, manufactured rapidly, and most critically, administered easily. Next generation vaccines need innovative approaches that prevent infection, severe disease, and reduce community transmission of respiratory pathogens such as influenza and SARS-CoV-2. Here we review an oral vaccine tablet that can be manufactured and released in less than 16 weeks of antigen design and deployed without the need for cold chain. The oral Ad5 modular vaccine platform utilizes a non-replicating adenoviral vector (rAd5) containing a novel molecular TLR3 adjuvant that is delivered by tablet, not by needle. This enterically coated, room temperature-stable vaccine tablet elicits robust antigen-specific IgA in the gastrointestinal and respiratory tracts and upregulates mucosal homing adhesion molecules on circulating B and T cells. Several influenza antigens have been tested using this novel vaccine approach and demonstrated efficacy in both preclinical animal models and in phase I/II clinical trials, including in a human challenge study. This oral rAd5 vaccine platform technology offers a promising new avenue for aiding in rapid pandemic preparedness and equitable worldwide vaccine distribution

    RNA elongation by respiratory syncytial virus polymerase is calibrated by conserved region V - Fig 6

    No full text
    <p><b>BI-D inhibited transcription</b> (A) Schematic diagram of the transcription-competent minigenome as described in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1006803#ppat.1006803.g002" target="_blank">Fig 2A</a>, with the regions contained within the CAT riboprobe indicated in red. (B) Northern blot analysis of input negative-sense minigenome RNA generated by T7 polymerase in the presence of varying concentrations of BI-D. (C) Northern blot analysis of positive-sense RNA produced from the minigenome, detected with the CAT riboprobe. (D) Quantification of CAT mRNA 1 where data are normalized to a mean of the two independent samples treated with DMSO included in each experiment, at 100%. The bars show the mean and range of two independent experiments.</p
    corecore