23 research outputs found
Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis
Neural stem cells (NSCs) contribute to plasticity and repair of the adult brain. Niches harboring NSCs regulate stem cell self-renewal and differentiation. We used comprehensive and untargeted single-cell RNA profiling to generate a molecular cell atlas of the largest germinal region of the adult mouse brain, the subventricular zone (SVZ). We characterized >20 neural and non-neural cell types and gained insights into the dynamics of neurogenesis by predicting future cell states based on computational analysis of RNA kinetics. Furthermore, we applied our single-cell approach to document decreased numbers of NSCs, reduced proliferation activity of progenitors, and perturbations in Wnt and BMP signaling pathways in mice lacking LRP2, an endocytic receptor required for SVZ maintenance. Our data provide a valuable resource to study adult neurogenesis and a proof of principle for the power of single-cell RNA sequencing to elucidate neural cell-type-specific alterations in loss-of-function models
Solar Signals in CMIP-5 Simulations: The Ozone Response
A multiple linear regression statistical method is applied to model data taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5) to estimate the 11-yr solar cycle responses of stratospheric ozone, temperature, and zonal wind during the 1979-2005 period. The analysis is limited to the six CMIP-5 models that resolve the stratosphere (high-top models) and that include interactive ozone chemistry. All simulations assumed a conservative 11-yr solar spectral irradiance (SSI) variation based on the NRL model. These model responses are then compared to corresponding observational estimates derived from two independent satellite ozone profile data sets and from ERA Interim Reanalysis meteorological data. The models exhibit a range of 11-yr responses with three models (CESM1-WACCM, MIROC-ESM-CHEM, and MRI-ESM1) yielding substantial solar-induced ozone changes in the upper stratosphere that compare favorably with available observations. The remaining three models do not, apparently because of differences in the details of their radiation and photolysis rate codes. During winter in both hemispheres, the three models with stronger upper stratospheric ozone responses produce relatively strong latitudinal gradients of ozone and temperature in the upper stratosphere that are associated with accelerations of the polar night jet under solar maximum conditions. This behavior is similar to that found in the satellite ozone and ERA Interim data except that the latitudinal gradients tend to occur at somewhat higher latitudes in the models. The sharp ozone gradients are dynamical in origin and assist in radiatively enhancing the temperature gradients, leading to a stronger zonal wind response. These results suggest that simulation of a realistic solar-induced variation of upper stratospheric ozone, temperature and zonal wind in winter is possible for at least some coupled climate models even if a conservative SSI variation is adopted
Recommended from our members
Historical simulations with HadGEM3-GC3.1 for CMIP6
We describe and evaluate historical simulations which use the third Hadley Centre Global Environment Model in the Global Coupled configuration 3.1 (HadGEM3-GC3.1) model and which form part of the UK's contribution to the sixth Coupled Model Intercomparison Project, CMIP6. These simulations, run at two resolutions, respond to historically evolving forcings such as greenhouse gases, aerosols, solar irradiance, volcanic aerosols, land use, and ozone concentrations. We assess the response of the simulations to these historical forcings and compare against the observational record. This includes the evolution of global mean surface temperature, ocean heat content, sea ice extent, ice sheet mass balance, permafrost extent, snow cover, North Atlantic sea surface temperature and circulation, and decadal precipitation. We find that the simulated time evolution of global mean surface temperature broadly follows the observed record but with important quantitative differences which we find are most likely attributable to strong effective radiative forcing from anthropogenic aerosols and a weak pattern of sea surface temperature response in the low to middle latitudes to volcanic eruptions. We also find evidence that anthropogenic aerosol forcings play a role in driving the Atlantic Multidecadal Variability and the Atlantic Meridional Overturning Circulation, which are key features of the North Atlantic ocean. Overall, the model historical simulations show many features in common with the observed record over the period 1850–2014 and so provide a basis for future in-depth study of recent climate change
Prox2 and Runx3 vagal sensory neurons regulate esophageal motility
Vagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice. We show that three of these neuronal subtypes innervate the esophagus and stomach in regionalized patterns, where they form intraganglionic laminar endings. Electrophysiological analysis revealed that they are low-threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis in freely behaving mice. Our work defines the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders
Current and emerging developments in subseasonal to decadal prediction
Weather and climate variations of subseasonal to decadal timescales can have enormous social, economic and environmental impacts, making skillful predictions on these timescales a valuable tool for decision makers. As such, there is a growing interest in the scientific, operational and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) timescales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) timescales, while the focus remains broadly similar (e.g., on precipitation, surface and upper ocean temperatures and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal and externally-forced variability such as anthropogenic warming in forecasts also becomes important.
The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correct, calibration and forecast quality assessment; model resolution; atmosphere-ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Prograame (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis
The atmospheric response to solar variability: simulations with a general circulation chemistry model for the entire atmosphere
Molecular characterization of nodose ganglia development reveals a novel population of Phox2b+ glial progenitors in mice
The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck, or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single cell RNA-sequencing (scRNA-seq) to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes, and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells and display a transcriptional program that may underlie their bipotent nature. SIGNIFICANCE STATEMENT: The nodose ganglia contain sensory neurons that innervate inner organs and play key roles in homeostatic behaviors like digestion, regulation of blood pressure and heart rate, and breathing. Nodose sensory neurons are supported by nodose glial cells, which are understudied compared to their neuronal neighbors. Specifically, the genetic program governing their development is not fully understood. Here, we uncover a transcriptional program unique to nodose glial cells (transient expression of Phox2b) that resolves the 40-year-old finding that nodose glial progenitors can also give rise to autonomic neurons (whose development depends on Phox2b expression). Lastly, we leveraged single cell RNA-sequencing to identify the four major subtypes of nodose glial cells and used subtype specific marker genes to map their spatial distribution
Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects underlying impaired adult neurogenesis
Neural stem cells (NSCs) contribute to plasticity and repair of the adult brain. Niches harboring NSCs are crucial for regulating stem cell self-renewal and differentiation. We used single-cell RNA profiling to generate an unbiased molecular atlas of all cell types in the largest neurogenic niche of the adult mouse brain, the subventricular zone (SVZ). We characterized > 20 neural and non-neural cell types and gained insights into the dynamics of neurogenesis by predicting future cell states based on computational analysis of RNA kinetics. Furthermore, we apply our single-cell approach to mice lacking LRP2, an endocytic receptor required for SVZ maintenance. The number of NSCs and proliferating progenitors was significantly reduced. Moreover, Wnt and BMP4 signaling was perturbed. We provide a valuable resource for adult neurogenesis, insights into SVZ neurogenesis regulation by LRP2, and a proof-of-principle demonstrating the power of single-cell RNA-seq in pinpointing neural cell type-specific functions in loss-of-function models
Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets
Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics.
Flatworms of the species Schmidtea mediterranea are immortal-adult animals contain a large pool of pluripotent stem cells that continuously differentiate into all adult cell types. Therefore, single-cell transcriptome profiling of adult animals should reveal mature and progenitor cells. By combining perturbation experiments, gene expression analysis, a computational method that predicts future cell states from transcriptional changes, and a lineage reconstruction method, we placed all major cell types onto a single lineage tree that connects all cells to a single stem cell compartment. We characterized gene expression changes during differentiation and discovered cell types important for regeneration. Our results demonstrate the importance of single-cell transcriptome analysis for mapping and reconstructing fundamental processes of developmental and regenerative biology at high resolution
