751 research outputs found

    OpenCell - Status and plans

    Get PDF
    Update on the current status of OpenCell ("www.opencell.org":http://www.opencell.org) and discussion of our plans for a new version of OpenCell

    Renormalization out of equilibrium in a superrenormalizable theory

    Full text link
    We discuss the renormalization of the initial value problem in Nonequilibrium Quantum Field Theory within a simple, yet instructive, example and show how to obtain a renormalized time evolution for the two-point functions of a scalar field and its conjugate momentum at all times. The scheme we propose is applicable to systems that are initially far from equilibrium and compatible with non-secular approximation schemes which capture thermalization. It is based on Kadanoff-Baym equations for non-Gaussian initial states, complemented by usual vacuum counterterms. We explicitly demonstrate how various cutoff-dependent effects peculiar to nonequilibrium systems, including time-dependent divergences or initial-time singularities, are avoided by taking an initial non-Gaussian three-point vacuum correlation into account.Comment: 5 pages, 2 figure

    Interplay of super-WIMP and freeze-in production of dark matter

    Full text link
    Non-thermalized dark matter is a cosmologically valid alternative to the paradigm of weakly interacting massive particles. For dark matter belonging to a Z2Z_2-odd sector that contains in addition a thermalized mediator particle, dark matter production proceeds in general via both the freeze-in and superWIMP mechanism. We highlight their interplay and emphasize the connection to long-lived particles at colliders. For the explicit example of a colored t-channel mediator model we map out the entire accessible parameter space, cornered by bounds from the LHC, big bang nucleosynthesis and Lyman-alpha forest observations, respectively. We discuss prospects for the HL- and HE-LHC.Comment: 9 pages + references, 2 figures; v2: title changed, matches journal versio

    Medium corrections to the CP-violating parameter in leptogenesis

    Full text link
    In two recent papers, arXiv:0909.1559 and arXiv:0911.4122, it has been demonstrated that one can obtain quantum corrected Boltzmann kinetic equations for leptogenesis using a top-down approach based on the Schwinger-Keldysh/Kadanoff-Baym formalism. These "Boltzmann-like" equations are similar to the ones obtained in the conventional bottom-up approach but differ in important details. In particular there is a discrepancy between the CP-violating parameter obtained in the first-principle derivation and in the framework of thermal field theory. Here we demonstrate that the two approaches can be reconciled if causal n-point functions are used in the thermal field theory approach. The new result for the medium correction to the CP-violating parameter is qualitatively different from the conventional one. The analogy to a toy model considered earlier enables us to write down consistent quantum corrected Boltzmann equations for thermal leptogenesis in the Standard Model (supplemented by three right-handed neutrinos) which include quantum statistical terms and medium corrected expressions for the CP-violating parameter.Comment: 13 pages, 9 figure

    Cosmological perturbation theory at three-loop order

    Full text link
    We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.Comment: 29 pages, 8 figures, 1 table; v2 Typos corrected, references added. Matches published versio

    Signatures of Majorana dark matter with t-channel mediators

    Full text link
    Three main strategies are being pursued to search for non-gravitational dark matter signals: direct detection, indirect detection and collider searches. Interestingly, experiments have reached sensitivities in these three search strategies which may allow detection in the near future. In order to take full benefit of the wealth of experimental data, and in order to confirm a possible dark matter signal, it is necessary to specify the nature of the dark matter particle and of the mediator to the Standard Model. In this paper, we focus on a simplified model where the dark matter particle is a Majorana fermion that couples to a light Standard Model fermion via a Yukawa coupling with a scalar mediator. We review the observational signatures of this model and we discuss the complementarity among the various search strategies, with emphasis in the well motivated scenario where the dark matter particles are produced in the early Universe via thermal freeze-out.Comment: 40+11 pages, 19 figures, review article, v2: matches published versio

    Leptogenesis: The Other Cuts

    Full text link
    For standard leptogenesis from the decay of singlet right-handed neutrinos, we derive source terms for the lepton asymmetry that are present in a finite density background but absent in the vacuum. These arise from cuts through the vertex correction to the decay asymmetry, where in the loop either the Higgs boson and the right-handed neutrino or the left-handed lepton and the right-handed neutrino are simultaneously on shell. We evaluate the source terms numerically and use them to calculate the lepton asymmetry for illustrative points in parameter space, where we consider only two right-handed neutrinos for simplicity. Compared to calculations where only the standard cut through the propagators of left-handed lepton and Higgs boson is included, sizable corrections arise when the masses of the right-handed neutrinos are of the same order, but the new sources are found to be most relevant when the decaying right-handed neutrino is heavier than the one in the loop. In that situation, they can yield the dominant contribution to the lepton asymmetry.Comment: 22 pages, 4 figure
    corecore