133 research outputs found

    Attribute Simulation for Item Embedding Enhancement in Multi-interest Recommendation

    Full text link
    Although multi-interest recommenders have achieved significant progress in the matching stage, our research reveals that existing models tend to exhibit an under-clustered item embedding space, which leads to a low discernibility between items and hampers item retrieval. This highlights the necessity for item embedding enhancement. However, item attributes, which serve as effective and straightforward side information for enhancement, are either unavailable or incomplete in many public datasets due to the labor-intensive nature of manual annotation tasks. This dilemma raises two meaningful questions: 1. Can we bypass manual annotation and directly simulate complete attribute information from the interaction data? And 2. If feasible, how to simulate attributes with high accuracy and low complexity in the matching stage? In this paper, we first establish an inspiring theoretical feasibility that the item-attribute correlation matrix can be approximated through elementary transformations on the item co-occurrence matrix. Then based on formula derivation, we propose a simple yet effective module, SimEmb (Item Embedding Enhancement via Simulated Attribute), in the multi-interest recommendation of the matching stage to implement our findings. By simulating attributes with the co-occurrence matrix, SimEmb discards the item ID-based embedding and employs the attribute-weighted summation for item embedding enhancement. Comprehensive experiments on four benchmark datasets demonstrate that our approach notably enhances the clustering of item embedding and significantly outperforms SOTA models with an average improvement of 25.59% on [email protected]: This paper has been accepted by the 17th ACM International Conference on Web Search and Data Mining (WSDM 2024). The camera-ready version will be available in the conference proceeding

    Design and fabrication of whisker hybrid ceramic membranes with narrow pore size distribution and high permeability via co-sintering process

    Get PDF
    Ceramic microfiltration membranes (MF) with narrow pore size distribution and high permeability are widely used for the preparation of ceramic ultrafiltration membranes (UF) and in wastewater treatment. In this work, a whisker hybrid ceramic membrane (WHCM) consisting of a whisker layer and an alumina layer was designed to achieve high permeability and narrow pore size distribution based on the relative resistance obtained using the Hagen-Poiseuille and Darcy equations. The whisker layer was designed to prevent the penetration of alumina particles into the support and ensure a high porosity of the membrane, while the alumina layer provided a smooth surface and narrow pore size distribution. Mass transfer resistance is critical to reduce the effect of the membrane layers. It was found that the resistance of the WHCM depended largely on the alumina layer. The effect of the support and whisker layer on the resistance of the WHCM was negligible. This was consistent with theoretical calculations. The WHCM was co-sintered at 1000 °C, which resulted in a high permeability of ~ 645 L m−1 h−1 ;bar−1 and a narrow pore size distribution of ~ 100 nm. Co-sintering was carried out on a macroporous ceramic support (just needed one sintering process), which greatly reduced the preparation cost and time. The WHCM (as the sub-layer) also showed a great potential to be used for the fabrication of ceramic UF membranes with high repeatability. Hence, this study provides an efficient approach for the fabrication of advanced ceramic MF membranes on macroporous supports, allowing for rapid prototyping with scale-up capability

    Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation

    Get PDF
    Protein separation in chemical industry applications using tight ceramic ultrafiltration (UF) membranes with multilayer asymmetric structures is hindered by challenges in their fabrication and fouling phenomenon. In this study, a facile co-sintering method for fabrication of silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes was comprehensively investigated. The introduction of AgNPs into the membrane layer not only controlled the membrane surface charge properties, but also alleviated the sintering stress in the co-sintering process, ensuring a complete membrane layer owing to the higher ductility. The AgNPs obtained from silver nitrate were introduced before the formation of boehmite nucleation, providing a uniform distribution of AgNPs within boehmite owing to the electric double layer. The final UF membranes prepared by the co-sintering process exhibited a molecular weight cut-off of 9000 Da and permeance of 62 Lm−2h−1bar−1. Furthermore, the isoelectric point of the membrane surface could be controlled by the AgNPs (from 9.0 to 2.7), providing sustainable antifouling properties for protein purification owing to the electrostatic repulsion force. The AgNPs-enhanced ceramic membrane material also exhibits a higher stability without silver leakage due to the thermal treatment at 1000 °C. The proposed facile co-sintering process for fabrication of antifouling ceramic UF membranes with the assistance of AgNPs could decrease the sintering time and energy consumption, and thus is promising for industrial protein separation applications

    A multi-analysis approach for estimating regional health impacts from the 2017 Northern California wildfires

    Get PDF
    Smoke impacts from large wildfires are mounting, and the projection is for more such events in the future as the one experienced October 2017 in Northern California, and subsequently in 2018 and 2020. Further, the evidence is growing about the health impacts from these events which are also difficult to simulate. Therefore, we simulated air quality conditions using a suite of remotely-sensed data, surface observational data, chemical transport modeling with WRF-CMAQ, one data fusion, and three machine learning methods to arrive at datasets useful to air quality and health impact analyses. To demonstrate these analyses, we estimated the health impacts from smoke impacts during wildfires in October 8–20, 2017, in Northern California, when over 7 million people were exposed to Unhealthy to Very Unhealthy air quality conditions. We investigated using the 5-min available GOES-16 fire detection data to simulate timing of fire activity to allocate emissions hourly for the WRF-CMAQ system. Interestingly, this approach did not necessarily improve overall results, however it was key to simulating the initial 12-hr explosive fire activity and smoke impacts. To improve these results, we applied one data fusion and three machine learning algorithms. We also had a unique opportunity to evaluate results with temporary monitors deployed specifically for wildfires, and performance was markedly different. For example, at the permanent monitoring locations, the WRF-CMAQ simulations had a Pearson correlation of 0.65, and the data fusion approach improved this (Pearson correlation = 0.95), while at the temporary monitor locations across all cases, the best Pearson correlation was 0.5. Overall, WRF-CMAQ simulations were biased high and the geostatistical methods were biased low. Finally, we applied the optimized PM2.5 exposure estimate in an exposure-response function. Estimated mortality attributable to PM2.5 exposure during the smoke episode was 83 (95% CI: 0, 196) with 47% attributable to wildland fire smoke. Implications: Large wildfires in the United States and in particular California are becoming increasingly common. Associated with these large wildfires are air quality and health impact to millions of people from the smoke. We simulated air quality conditions using a suite of remotely-sensed data, surface observational data, chemical transport modeling, one data fusion, and three machine learning methods to arrive at datasets useful to air quality and health impact analyses from the October 2017 Northern California wildfires. Temporary monitors deployed for the wildfires provided an important model evaluation dataset. Total estimated regional mortality attributable to PM2.5 exposure during the smoke episode was 83 (95% confidence interval: 0, 196) with 47% of these deaths attributable to the wildland fire smoke. This illustrates the profound effect that even a 12-day exposure to wildland fire smoke can have on human health

    Comprehensive investigation and regulatory function of lncRNAs engaged in western honey bee larval immune response to Ascosphaera apis invasion

    Get PDF
    Ascosphaera apis is a fungal pathogen that exclusively infects bee larvae, causing chalkbrood disease, which results in severe damage for beekeeping industry. Long non-coding RNAs (lncRNAs) are versatile regulators in various biological processes such as immune defense and host-pathogen interaction. However, expression pattern and regulatory role of lncRNAs involved in immune response of bee host to A. apis invasion is still very limited. Here, the gut tissues of Apis mellifera ligustica 4-, 5-, and 6-day-old larvae inoculated by A. apis spores (AmT1, AmT2, and AmT3 groups) and corresponding un-inoculated larval guts (AmCK1, AmCK2, and AmCK3 groups) were prepared and subjected to deep sequencing, followed by identification of lncRNAs, analysis of differentially expressed lncRNAs (DElncRNAs), and investigation of competing endogenous RNA (ceRNA) network. In total, 3,746 A. m. ligustica lncRNAs were identified, including 78 sense lncRNAs, 891 antisense lncRNAs, 1,893 intergenic lncRNAs, 346 bidirectional lncRNAs, and 210 intronic lncRNAs. In the 4-, 5-, and 6- comparison groups, 357, 236, and 505 DElncRNAs were discovered. Additionally, 217, 129, and 272 DElncRNAs were respectively predicted to regulate neighboring genes via cis-acting manner, and these targets were associated with a series of GO terms and KEGG pathways of great importance, such as response to stimulus and Jak-STAT signaling pathway. Moreover, 197, 95, and 356 DElncRNAs were observed to target 10, eight, and 21 DEmiRNAs and further target 147, 79, and 315 DEmRNAs, forming complex regulatory networks. Further investigation suggested that these targets were engaged in several key cellular and humoral immune pathways, such as phagosome and MAPK signaling pathway. Ultimately, the expression trends of nine randomly selected DElncRNAs were verified by RT-qPCR, confirming the authenticity and reliability of our transcriptome data. Findings in this current work not only provide candidate DElncRNAs for functional study, but also lay a foundation for unclosing the mechanism underlying DElncRNA-regulated larval immune responses to A. apis invasion

    Prostaglandin E2 Promotes Endothelial Differentiation from Bone Marrow-Derived Cells through AMPK Activation

    Get PDF
    Prostaglandin E2 (PGE2) has been reported to modulate angiogenesis, the process of new blood vessel formation, by promoting proliferation, migration and tube formation of endothelial cells. Endothelial progenitor cells are known as a subset of circulating bone marrow mononuclear cells that have the capacity to differentiate into endothelial cells. However, the mechanism underlying the stimulatory effects of PGE2 and its specific receptors on bone marrow-derived cells (BMCs) in angiogenesis has not been fully characterized. Treatment with PGE2 significantly increased the differentiation and migration of BMCs. Also, the markers of differentiation to endothelial cells, CD31 and von Willebrand factor, and the genes associated with migration, matrix metalloproteinases 2 and 9, were significantly upregulated. This upregulation was abolished by dominant-negative AMP-activated protein kinase (AMPK) and AMPK inhibitor but not protein kinase, a inhibitor. As a functional consequence of differentiation and migration, the tube formation of BMCs was reinforced. Along with altered BMCs functions, phosphorylation and activation of AMPK and endothelial nitric oxide synthase, the target of activated AMPK, were both increased which could be blocked by EP4 blocking peptide and simulated by the agonist of EP4 but not EP1, EP2 or EP3. The pro-angiogenic role of PGE2 could be repressed by EP4 blocking peptide and retarded in EP4+/− mice. Therefore, by promoting the differentiation and migration of BMCs, PGE2 reinforced their neovascularization by binding to the receptor of EP4 in an AMPK-dependent manner. PGE2 may have clinical value in ischemic heart disease

    DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

    Full text link
    The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore