25 research outputs found
ДВУХСТОРОННЕЕ ЭТАПНОЕ ЭНДОПРОТЕЗИРОВАНИЕ ГОЛЕНОСТОПНЫХ СУСТАВОВ У ПАЦИЕНТА С ВЫРАЖЕННЫМ ДЕФЕКТОМ ТАРАННОЙ КОСТИ (СЛУЧАЙ ИЗ ПРАКТИКИ)
Ankle arthroplasty is known to become more successful procedure versus ankle fusion in patients with ankle osteoarthritis. This article represents a clinical case of performing three-staged bilateral ankle arthroplasty by means of HINTEGRA and Mobility implants in a patient with severe defect of the talus. The patient was followed up for 2 years for right ankle and 4 years - for left ankle. The correct treatment strategy gave the patient a new lease of life. He resumed sports activities, being pain-free in both the ankle joints.Эндопротезирование голеностопного сустава становится все более востребованным видом оперативного лечения пациентов с остеоартрозом голеностопного сустава. Описан опыт двухстороннего этапного эндопротезирования голеностопного сустава протезами HINTEGRA (New Deal) и Mobility (DePuy) при выраженном дефекте таранной кости. Лечение пациента было выполнено в три этапа. Срок послеоперационного наблюдения составил 2 года для правого голеностопного сустава и 4 года для левого. Правильный выбор алгоритма лечения позволил снять болевой синдром, улучшить качество жизни пациента и восстановить его физическую активность
Measurement of jet suppression in central Pb-Pb collisions at root s(NN)=2.76 TeV
The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of \eta(jet)\ 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-AA. The nuclear modification factor R-AA was found to be 0.28 +/- 0.04 in 0-10% and 0.35 +/- 0.04 in 10-30% collisions, independent of p(T), jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe
Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27±0.07) × 1011 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill
Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment
In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved
Centrality dependence of high-pT D meson suppression in Pb-Pb collisions at 1asNN = 2.76 TeV
The nuclear modification factor, RAA, of the prompt charmed mesons D0, D+ and D 17+, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy 1asNN = 2.76 TeV in two transverse momentum intervals, 5 < pT < 8GeV/c and 8 < pT < 16GeV/c, and in six collision centrality classes. The RAA shows a maximum suppression of a factor of 5\u20136 in the 10% most central collisions. The suppression and its centrality dependence are compatible within uncertainties with those of charged pions. A comparison with the RAA of non-prompt J/\u3c8 from B meson decays, measured by the CMS Collaboration, hints at a larger suppression of D mesons in the most central collisions
ЭНДОПРОТЕЗИРОВАНИЕ ГОЛЕНОСТОПНОГО СУСТАВА (ОБЗОР ЛИТЕРАТУРЫ)
Ankle joint replacement remains the most promising but at the same time one of the most challenging fields of orthopedics. In this article the authors analyzed the history of ankle joint replacement development with meticulous details of the prosthesis structure as well as complications occurring with different generations of the prosthesis. Major tendencies of development and improvements of the prosthesis are described while taking into account the complicated biomechanics of the ankle joint. Based on the completed analysis the conclusion was made that using new materials in combination with improved structure allows for major improvements in the ankle joint replacement.Эндопротезирование голеностопного сустава на сегодняшний день является одним из перспективных, но мало изученных направлений. Представлена история развития эндопротезов голеностопного сустава с подробным анализом конструкций, типов, а также осложнений, возникающих при использовании разных поколений эндопротезов. Описаны основные тенденции развития и пути совершенствования эндопротезов, учитывающих всю сложность биомеханики голеностопного сустава. Использование новых материалов в сочетании с усовершенствованной конструкцией позволило заметно улучшить результаты эндопротезирования голеностопного сустава
Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target
The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 1011muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27 +/- 0.07)x1011protons on target was recorded. This amounts to approximatively 1% of a SHiP spill
Measurement of the muon flux for the SHiP experiment
The SHiP experiment will search for very weakly interacting particles beyond the Standard Model which are produced in a 400 \GeV/ proton beam dump at the CERN SPS. About muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400~\GeV/ proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a three-week period a dataset for analysis corresponding to protons on target was recorded. This amounts to approximatively 1\% of a SHiP spill
The experimental facility for the Search for Hidden Particles at the CERN SPS
The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to (10) GeV/c2 in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background