61 research outputs found

    Novel Photosensitizers Trigger Rapid Death of Malignant Human Cells and Rodent Tumor Transplants via Lipid Photodamage and Membrane Permeabilization

    Get PDF
    BACKGROUND: Apoptotic cascades may frequently be impaired in tumor cells; therefore, the approaches to circumvent these obstacles emerge as important therapeutic modalities. METHODOLOGY/PRINCIPAL FINDINGS: Our novel derivatives of chlorin e(6), that is, its amide (compound 2) and boronated amide (compound 5) evoked no dark toxicity and demonstrated a significantly higher photosensitizing efficacy than chlorin e(6) against transplanted aggressive tumors such as B16 melanoma and M-1 sarcoma. Compound 5 showed superior therapeutic potency. Illumination with red light of mammalian tumor cells loaded with 0.1 µM of 5 caused rapid (within the initial minutes) necrosis as determined by propidium iodide staining. The laser confocal microscopy-assisted analysis of cell death revealed the following order of events: prior to illumination, 5 accumulated in Golgi cysternae, endoplasmic reticulum and in some (but not all) lysosomes. In response to light, the reactive oxygen species burst was concomitant with the drop of mitochondrial transmembrane electric potential, the dramatic changes of mitochondrial shape and the loss of integrity of mitochondria and lysosomes. Within 3-4 min post illumination, the plasma membrane became permeable for propidium iodide. Compounds 2 and 5 were one order of magnitude more potent than chlorin e(6) in photodamage of artificial liposomes monitored in a dye release assay. The latter effect depended on the content of non-saturated lipids; in liposomes consisting of saturated lipids no photodamage was detectable. The increased therapeutic efficacy of 5 compared with 2 was attributed to a striking difference in the ability of these photosensitizers to permeate through hydrophobic membrane interior as evidenced by measurements of voltage jump-induced relaxation of transmembrane current on planar lipid bilayers. CONCLUSIONS/SIGNIFICANCE: The multimembrane photodestruction and cell necrosis induced by photoactivation of 2 and 5 are directly associated with membrane permeabilization caused by lipid photodamage

    Search for anomalous Wtb couplings and flavour-changing neutral currents in t-channel single top quark production in pp collisions at root s=7 and 8 TeV

    Get PDF
    Peer reviewe

    Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV

    Get PDF
    Peer reviewe

    Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at √s=8 TeV using H → WW decays

    Get PDF
    The cross section for Higgs boson production in pp collisions is studied using the H → W+W− decay mode, followed by leptonic decays of the W bosons to an oppositely charged electron-muon pair in the final state. The measurements are performed using data collected by the CMS experiment at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.4 fb−1. The Higgs boson transverse momentum (pT) is reconstructed using the lepton pair pT and missing pT. The differential cross section times branching fraction is measured as a function of the Higgs boson pT in a fiducial phase space defined to match the experimental acceptance in terms of the lepton kinematics and event topology. The production cross section times branching fraction in the fiducial phase space is measured to be 39 ± 8 (stat) ± 9 (syst) fb. The measurements are found to agree, within experimental uncertainties, with theoretical calculations based on the standard model

    Cerebrolysin as an Early Add-on to Reperfusion Therapy: Risk of Hemorrhagic Transformation after Ischemic Stroke (CEREHETIS), a prospective, randomized, multicenter pilot study

    No full text
    Abstract Background Cerebrolysin could mitigate reperfusion injury and hemorrhagic transformation (HT) in animal models of acute ischemic stroke. Methods This was a prospective, randomized, open-label, parallel-group with active control, multicenter pilot study. Cerebrolysin (30 mL/day over 14 days) was administered concurrently with alteplase (0.9 mg/kg) in 126 patients, whereas 215 control patients received alteplase alone. The primary outcomes were the rate of any and symptomatic HT assessed from day 0 to 14. The secondary endpoints were drug safety and functional outcome measured with the National Institutes of Health Stroke Scale (NIHSS) on day 1 and 14, and the modified Rankin scale (mRS) on day 90. Advanced brain imaging analysis was applied on day 1 and 14 as a marker for in vivo pharmacology of Cerebrolysin. Results Cerebrolysin treatment resulted in a substantial decrease of the symptomatic HT rate with an odds ratio (OR) of 0.248 (95% CI: 0.072–0.851; p = 0.019). No serious adverse events attributed to Cerebrolysin occurred. On day 14, the Cerebrolysin arm showed a significant decrease in the NIHSS score (p = 0.045). However, no difference in the mRS score was observed on day 90. A substantial improvement in the advanced brain imaging parameters of the infarcted area was evident in the Cerebrolysin group on day 14. Conclusions Early add-on of Cerebrolysin to reperfusion therapy was safe and significantly decreased the rate of symptomatic HT as well as early neurological deficit. No effect on day 90 functional outcome was detected. Improvements in the imaging metrics support the neuroprotective and blood–brain barrier stabilizing activity of Cerebrolysin. Trial registration Name of Registry: ISRCTN. Trial Registration Number: ISRCTN87656744 . Trial Registration Date: 16/02/2021

    DataSheet1_Heterogeneous treatment effects of Cerebrolysin as an early add-on to reperfusion therapy: post hoc analysis of the CEREHETIS trial.XLSX

    No full text
    Background: There has been intensive research into enhancing the effects of reperfusion therapy to mitigate hemorrhagic transformation (HT) in stroke patients. Using neuroprotective agents alongside intravenous thrombolysis (IVT) appears a promising approach. Cerebrolysin is one of the candidates since it consists of neuropeptides mimicking the action of neurotrophic factors on brain protection and repair.Objectives: We looked at treatment effects of Cerebrolysin as an early add-on to IVT in stroke patients with varying HT risk.Methods: It was post hoc analysis of the CEREHETIS trial (ISRCTN87656744). Patients with middle cerebral artery infarction (n = 238) were selected from the intention-to-treat population. To stratify participants according to their HT risk, the DRAGON, SEDAN and HTI scores were computed for each eligible subject using on-admission data. The study endpoints were any and symptomatic HT, and functional outcome measured with the modified Rankin Scale (mRS) on day 90. Favorable functional outcome (FFO) was defined as an mRS ≤2. The performance of each stratification tool was estimated with regression approaches. Heterogeneous treatment effect analysis was conducted using techniques of meta-analysis and the matching-smoothing method.Results: The HTI score outperformed other tools in terms of HT risk stratification. Heterogeneity of Cerebrolysin treatment effects was moderate (I2, 35.8%–56.7%; H2, 1.56–2.31) and mild (I2, 10.9%; H2, 1.12) for symptomatic and any HT, respectively. A significant positive impact of Cerebrolysin on HT and functional outcome was observed in the moderate (HTI = 1) and high (HTI ≥2) HT risk patients, but it was neutral in those with the low (HTI = 0) risk. In particular, there was a steady decline in the rate of symptomatic (HTI = 0 vs. HTI = 4: by 4.3%, p = 0.077 vs. 21.1%, p Conclusion: Clinically meaningful heterogeneity of Cerebrolysin treatment effects on HT and functional outcome was established in stroke patients. The beneficial effects were significant in those whose estimated on-admission HT risk was either moderate or high.</p

    DataSheet3_Heterogeneous treatment effects of Cerebrolysin as an early add-on to reperfusion therapy: post hoc analysis of the CEREHETIS trial.docx

    No full text
    Background: There has been intensive research into enhancing the effects of reperfusion therapy to mitigate hemorrhagic transformation (HT) in stroke patients. Using neuroprotective agents alongside intravenous thrombolysis (IVT) appears a promising approach. Cerebrolysin is one of the candidates since it consists of neuropeptides mimicking the action of neurotrophic factors on brain protection and repair.Objectives: We looked at treatment effects of Cerebrolysin as an early add-on to IVT in stroke patients with varying HT risk.Methods: It was post hoc analysis of the CEREHETIS trial (ISRCTN87656744). Patients with middle cerebral artery infarction (n = 238) were selected from the intention-to-treat population. To stratify participants according to their HT risk, the DRAGON, SEDAN and HTI scores were computed for each eligible subject using on-admission data. The study endpoints were any and symptomatic HT, and functional outcome measured with the modified Rankin Scale (mRS) on day 90. Favorable functional outcome (FFO) was defined as an mRS ≤2. The performance of each stratification tool was estimated with regression approaches. Heterogeneous treatment effect analysis was conducted using techniques of meta-analysis and the matching-smoothing method.Results: The HTI score outperformed other tools in terms of HT risk stratification. Heterogeneity of Cerebrolysin treatment effects was moderate (I2, 35.8%–56.7%; H2, 1.56–2.31) and mild (I2, 10.9%; H2, 1.12) for symptomatic and any HT, respectively. A significant positive impact of Cerebrolysin on HT and functional outcome was observed in the moderate (HTI = 1) and high (HTI ≥2) HT risk patients, but it was neutral in those with the low (HTI = 0) risk. In particular, there was a steady decline in the rate of symptomatic (HTI = 0 vs. HTI = 4: by 4.3%, p = 0.077 vs. 21.1%, p Conclusion: Clinically meaningful heterogeneity of Cerebrolysin treatment effects on HT and functional outcome was established in stroke patients. The beneficial effects were significant in those whose estimated on-admission HT risk was either moderate or high.</p

    The hemorrhagic transformation index score: a prediction tool in middle cerebral artery ischemic stroke

    No full text
    Abstract Background We aimed to develop a tool, the hemorrhagic transformation (HT) index (HTI), to predict any HT within 14 days after middle cerebral artery (MCA) stroke onset regardless of the intravenous recombinant tissue plasminogen activator (IV rtPA) use. That is especially important in the light of missing evidence-based data concerning the timing of anticoagulant resumption after stroke in patients with atrial fibrillation (AF). Methods We retrospectively analyzed 783 consecutive MCA stroke patients. Clinical and brain imaging data at admission were recorded. A follow-up period was 2 weeks after admission. The patients were divided into derivation (DC) and validation (VC) cohorts by generating Bernoulli variates with probability parameter 0.7. Univariate/multivariate logistic regression, and factor analysis were used to extract independent predictors. Validation was performed with internal consistency reliability and receiver operating characteristic (ROC) analysis. Bootstrapping was used to reduce bias. Results The HTI was composed of 4 items: Alberta Stroke Program Early CT score (ASPECTS), National Institutes of Health Stroke Scale (NIHSS), hyperdense MCA (HMCA) sign, and AF on electrocardiogram (ECG) at admission. According to the predicted probability (PP) range, scores were allocated to ASPECTS as follows: 10–7 = 0; 6–5 = 1; 4–3 = 2; 2–0 = 3; to NIHSS: 0–11 = 0; 12–17 = 1; 18–23 = 2; >23 = 3; to HMCA sign: yes = 1; to AF on ECG: yes = 1. The HTI score varied from 0 to 8. For each score, adjusted PP of any HT with 95% confidence intervals (CI) was as follows: 0 = 0.027 (0.011–0.042); 1 = 0.07 (0.043–0.098); 2 = 0.169 (0.125–0.213); 3 = 0.346 (0.275–0.417); 4 = 0.571 (0.474–0.668); 5 = 0.768 (0.676–0.861); 6 = 0.893 (0.829–0.957); 7 = 0.956 (0.92–0.992); 8 = 0.983 (0.965–1.0). The optimal cutpoint score to differentiate between HT-positive and negative groups was 2 (95% normal-based CI, 1–3) for the DC and VC alike. ROC area/sensitivity/specificity with 95% normal-based CI for the DC and VC were 0.85 (0.82–0.89)/0.82 (0.73–0.9)/0.89 (0.8–0.97) and 0.83 (0.78–0.88)/0.8 (0.66–0.94)/0.87 (0.73–1.0) respectively. McDonald’s categorical omega with 95% bias-corrected and accelerated CI for the DC and VC was 0.81 (0.77–0.84) and 0.82 (0.76–0.86) respectively. Conclusions The HTI is a simple yet reliable tool to predict any HT within 2 weeks after MCA stroke onset regardless of the IV rtPA use
    corecore