170 research outputs found

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    The Proxy-SU(3) Symmetry in Atomic Nuclei

    No full text
    The microscopic origins and the current predictions of the proxy-SU(3) symmetry model of atomic nuclei were reviewed. Beginning with experimental evidence for the special roles played by nucleon pairs with maximal spatial overlap, the proxy-SU(3) approximation scheme is introduced; its validity is demonstrated through Nilsson model calculations and its connection to the spherical shell model. The major role played by the highest weight-irreducible representations of SU(3) in shaping up the nuclear properties is pointed out, resulting in parameter-free predictions of the collective variables β and γ for even–even nuclei in the explanation of the dominance of prolate over oblate shapes in the ground states of even–even nuclei, in the prediction of a shape/phase transition from prolate to oblate shapes below closed shells, and in the prediction of specific islands on the nuclear chart in which shape coexistence is confined. Further developments within the proxy-SU(3) scheme are outlined

    Islands of Shape Coexistence: Theoretical Predictions and Experimental Evidence

    No full text
    Parameter-free theoretical predictions based on a dual shell mechanism within the proxy-SU(3) symmetry of atomic nuclei, as well as covariant density functional theory calculations using the DDME2 functional indicate that shape coexistence (SC) based on the particle-hole excitation mechanism cannot occur everywhere on the nuclear chart but is restricted on islands lying within regions of 7–8, 17–20, 34–40, 59–70, 96–112, 146–168 protons or neutrons. Systematics of data for even-even nuclei possessing K=0 (beta) and K=2 (gamma) bands support the existence of these islands, on which shape coexistence appears whenever the K=0 bandhead 02+ and the first excited state of the ground state band 21+ lie close in energy, with nuclei characterized by 02+ lying below the 21+ found in the center of these islands. In addition, a simple theoretical mechanism leading to multiple-shape coexistence is briefly discussed

    SANTORY: SANTORini’s Seafloor Volcanic ObservatorY

    Get PDF
    International audienceSubmarine hydrothermal systems along active volcanic ridges and arcs are highly dynamic, responding to both oceanographic (e.g., currents, tides) and deep-seated geological forcing (e.g., magma eruption, seismicity, hydrothermalism, and crustal deformation, etc.). In particular, volcanic and hydrothermal activity may also pose profoundly negative societal impacts (tsunamis, the release of climate-relevant gases and toxic metal(loid)s). These risks are particularly significant in shallow (<1000m) coastal environments, as demonstrated by the January 2022 submarine paroxysmal eruption by the Hunga Tonga-Hunga Ha’apai Volcano that destroyed part of the island, and the October 2011 submarine eruption of El Hierro (Canary Islands) that caused vigorous upwelling, floating lava bombs, and natural seawater acidification. Volcanic hazards may be posed by the Kolumbo submarine volcano, which is part of the subduction-related Hellenic Volcanic Arc at the intersection between the Eurasian and African tectonic plates. There, the Kolumbo submarine volcano, 7 km NE of Santorini and part of Santorini’s volcanic complex, hosts an active hydrothermal vent field (HVF) on its crater floor (~500m b.s.l.), which degasses boiling CO 2 –dominated fluids at high temperatures (~265°C) with a clear mantle signature. Kolumbo’s HVF hosts actively forming seafloor massive sulfide deposits with high contents of potentially toxic, volatile metal(loid)s (As, Sb, Pb, Ag, Hg, and Tl). The proximity to highly populated/tourist areas at Santorini poses significant risks. However, we have limited knowledge of the potential impacts of this type of magmatic and hydrothermal activity, including those from magmatic gases and seismicity. To better evaluate such risks the activity of the submarine system must be continuously monitored with multidisciplinary and high resolution instrumentation as part of an in-situ observatory supported by discrete sampling and measurements. This paper is a design study that describes a new long-term seafloor observatory that will be installed within the Kolumbo volcano, including cutting-edge and innovative marine-technology that integrates hyperspectral imaging, temperature sensors, a radiation spectrometer, fluid/gas samplers, and pressure gauges. These instruments will be integrated into a hazard monitoring platform aimed at identifying the precursors of potentially disastrous explosive volcanic eruptions, earthquakes, landslides of the hydrothermally weakened volcanic edifice and the release of potentially toxic elements into the water column

    Search for narrow resonances using the dijet mass spectrum in pp collisions at s√=8  TeV

    Get PDF
    Results are presented of a search for the production of new particles decaying to pairs of partons (quarks, antiquarks, or gluons), in the dijet mass spectrum in proton-proton collisions at s√=8  TeV. The data sample corresponds to an integrated luminosity of 4.0  fb−1, collected with the CMS detector at the LHC in 2012. No significant evidence for narrow resonance production is observed. Upper limits are set at the 95% confidence level on the production cross section of hypothetical new particles decaying to quark-quark, quark-gluon, or gluon-gluon final states. These limits are then translated into lower limits on the masses of new resonances in specific scenarios of physics beyond the standard model. The limits reach up to 4.8 TeV, depending on the model, and extend previous exclusions from similar searches performed at lower collision energies. For the first time mass limits are set for the Randall–Sundrum graviton model in the dijet channel

    Search for ZZ ' resonances decaying to ttˉt\bar{t} in dilepton+jets final states in pppp collisions at s=7\sqrt{s}=7 TeV

    No full text
    A search for resonances decaying to top quark-antiquark pairs is performed using a dilepton+jets data sample recorded by the CMS experiment at the LHC in pp collisions at sqrt(s) = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns. No significant deviations from the standard model background are observed. Upper limits are presented for the production cross section times branching fraction of top quark-antiquark resonances for masses from 750 to 3000 GeV. In particular, the existence of a leptophobic topcolor particle Z' is excluded at the 95% confidence level for resonance masses M[Z'] < 1.3 TeV for Gamma[Z'] = 0.012 M[Z'], and M[Z'] < 1.9 TeV for Gamma[Z'] = 0.10 M[Z']
    corecore