99 research outputs found

    Mobile Phones and Multiple Sclerosis – A Nationwide Cohort Study in Denmark

    Get PDF
    We investigated the risk of, prognosis of and symptoms of multiple sclerosis (MS) among all Danish residents who owned a mobile phone subscription before 1996. Using the Danish Multiple Sclerosis Registry and Civil Registration System, study subjects were followed up for MS through 2004. Poisson models were used to calculate incidence rate ratios (IRR, age range: 18–64 years) and mortality rate ratios (MRR, age range: 18+) and to compare presenting symptoms among subscribers and all non-subscribers. A total of 405 971 subscription holders accrued four million years of follow up, with men accounting for 86% of the observation time. Among subscription holding men, the IRR of MS was close to unity, overall as well as 13+ years after first subscription (IRR 1.02, 95% CI: 0.48–2.16). Among women, the IRR was 3.43 (95% CI: 0.86–13.72) 13+ years after first subscription, however, based on only two cases. Presenting symptoms of MS differed between subscribers and non-subscribers (p = 0.03), with slightly increased risk of diplopia in both genders (IRR: 1.38, 95% CI: 1.02–1.86), an increased risk of fatigue among women (IRR: 3.02, 95% CI: 1.45–6.28), and of optic neuritis among men (IRR: 1.38, 95% CI: 1.03–1.86). Overall the MRR was close to one (MRR: 0.91, 95%CI 0.70–1.19) among MS-patients with a subscription and although we observed some increased MRR estimates among women, these were based on small numbers. In conclusion, we found little evidence for a pronounced association between mobile phone use and risk of MS or mortality rate among MS patients. Symptoms of MS differed between subscribers and nonsubscribers for symptoms previously suggested to be associated with mobile phone use. This deserves further attention, as does the increased long-term risk of MS among female subscribers, although small numbers and lack of consistency between genders prevent causal interpretation

    The COGs (context, object, and goals) in multisensory processing

    Get PDF
    Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and “top-down” control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer’s goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF

    Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV

    Get PDF
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

    Get PDF
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ÂŻ

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at root s=13 TeV

    Get PDF
    • 

    corecore