13 research outputs found

    Chirality transfer in metal-­‐catalysed intermolecular addition reactions involving allenes

    Get PDF
    Allene chemistry in the presence of transition metal complexes is nowadays a very important topic that underpins many challenges and advances in organic synthesis. The amount of research articles covering new transformations of allenes is vast and the development of enantioselective reactions involving allenes has flourished in the last 10-15 years. In this review we cover three important topics in allene chemistry that we feel are timely appropriate for this special issue celebrating the work of Prof Trost: the metal-catalysed reactions involving chirality transfer from chiral allenes to products; the analysis of the possible racemization processes that have been observed in the interaction of some metals with allenes; and the chirality transfer using racemic allenes in reactions catalysed by metal complexes bearing chiral ligands to produce enantioriched products. We have focussed the review on intermolecular addition reactions as they are still much less explored than the intramolecular version

    Iron-Catalysed Markovnikov Hydrothiolation of Styrenes

    Full text link
    The bis(triflimide)iron(III) salt catalyzes the hydrothiolation of styrenes in a Markovnikov fashion with good selectivities and high yields. After isolation, different benzylic thioethers are obtained. This iron(III) catalyst is unique in terms of regioselectivity and represents a sustainable and economic alternative to those processes based on stoichiometric reagents.The work have been supported by Consolider-Ingenio 2010 (proyecto MULTICAT), and PROMETEO from Generalitat Valenciana. J.R.C.-A. thanks MCIINN for the provision of a doctoral grant. A.L.-P. thanks ITQ for financial support. We thank Dr. M. Domine for the HR-MS measurements.Cabrero Antonino, JR.; Leyva Perez, A.; Corma CanĂłs, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis and Catalysis. 354:678-687. doi:10.1002/adsc.201100731S678687354DAEMMRICH, A. A., & BOWDEN, M. E. (2005). PHARMA SINCE 1870. Chemical & Engineering News Archive, 83(25), 28-42. doi:10.1021/cen-v083n025.p028Page, P. C. B. (Ed.). (1999). Organosulfur Chemistry II. Topics in Current Chemistry. doi:10.1007/3-540-48986-xGruber, A. S., Zim, D., Ebeling, G., Monteiro, A. L., & Dupont, J. (2000). Sulfur-Containing Palladacycles as Catalyst Precursors for the Heck Reaction. Organic Letters, 2(9), 1287-1290. doi:10.1021/ol0057277Perchonock, C. D., McCarthy, M. E., Erhard, K. F., Gleason, J. G., Wasserman, M. A., Muccitelli, R. M., 
 Vickery, L. M. (1985). Synthesis and pharmacological characterization of 5-(2-dodecylphenyl)-4,6-dithianonanedioic acid and 5-[2-(8-phenyloctyl)phenyl]-4,6-dithianonanedioic acid: prototypes of a novel class of leukotriene antagonists. Journal of Medicinal Chemistry, 28(9), 1145-1147. doi:10.1021/jm00147a004Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414uGriesbaum, K. (1970). Probleme und Möglichkeiten der radikalischen Addition von Thiolen an ungesĂ€ttigte Verbindungen. Angewandte Chemie, 82(7), 276-290. doi:10.1002/ange.19700820703Griesbaum, K. (1970). Problems and Possibilities of the Free-Radical Addition of Thiols to Unsaturated Compounds. Angewandte Chemie International Edition in English, 9(4), 273-287. doi:10.1002/anie.197002731Screttas, C. G., & Micha-Screttas, M. (1978). Hydrolithiation of .alpha.-olefins by a regiospecific two-step process. Transformation of alkyl phenyl sulfides to alkyllithium reagents. The Journal of Organic Chemistry, 43(6), 1064-1071. doi:10.1021/jo00400a008Bakuzis, P., Bakuzis, M. L. F., Fortes, C. C., & Santos, R. (1976). The sulfide group as an aldehyde precursor. The Journal of Organic Chemistry, 41(16), 2769-2770. doi:10.1021/jo00878a027Water promoted catalyst-free anti-Markovnikov addition of thiols to styrenes. (2008). Arkivoc, 2008(15), 47. doi:10.3998/ark.5550190.0009.f06Nguyen, V.-H., Nishino, H., Kajikawa, S., & Kurosawa, K. (1998). Mn(III)-based reactions of alkenes and alkynes with thiols. An approach toward substituted 2,3-dihydro-1,4-oxathiins and simple route to (E)-vinyl sulfides. Tetrahedron, 54(38), 11445-11460. doi:10.1016/s0040-4020(98)00707-8Kumar, P., Pandey, R. K., & Hegde, V. R. (1999). Anti-Markovnikov Addition of Thiols Across Double Bonds Catalyzed by H-Rho-Zeolite. Synlett, 1999(12), 1921-1922. doi:10.1055/s-1999-2976Gao, S., Tzeng, T., Sastry, M. N. V., Chu, C.-M., Liu, J.-T., Lin, C., & Yao, C.-F. (2006). Iodine catalyzed conjugate addition of mercaptans to α,ÎČ-unsaturated carboxylic acids under solvent-free condition. Tetrahedron Letters, 47(12), 1889-1893. doi:10.1016/j.tetlet.2006.01.080BusquĂ©, F., de March, P., Figueredo, M., Font, J., & GonzĂĄlez, L. (2004). A Study of the Conjugate Addition of Thionucleophiles to 2(5H)-Furanones. European Journal of Organic Chemistry, 2004(7), 1492-1499. doi:10.1002/ejoc.200300693McDaid, P., Chen, Y., & Deng, L. (2002). A Highly Enantioselective and General Conjugate Addition of Thiols to Cyclic Enones with an Organic Catalyst. Angewandte Chemie, 114(2), 348-350. doi:10.1002/1521-3757(20020118)114:23.0.co;2-6McDaid, P., Chen, Y., & Deng, L. (2002). A Highly Enantioselective and General Conjugate Addition of Thiols to Cyclic Enones with an Organic Catalyst This work was financially supported by National Institutes of Health (GM-61591), Research Corporation (RI-0311), and the Harcourt General Charitable Foundation. Angewandte Chemie International Edition, 41(2), 338. doi:10.1002/1521-3773(20020118)41:23.0.co;2-mBandini, M., Cozzi, P. G., Giacomini, M., Melchiorre, P., Selva, S., & Umani-Ronchi, A. (2002). Sequential One-Pot InBr3-Catalyzed 1,4- then 1,2-Nucleophilic Addition to Enones. The Journal of Organic Chemistry, 67(11), 3700-3704. doi:10.1021/jo0163243Nishimura, K., & Tomioka, K. (2002). Chiral Amino Ether-Controlled Catalytic Enantioselective Arylthiol Conjugate Additions to α,ÎČ-Unsaturated Esters and Ketones:  Scope, Structural Requirements, and Mechanistic Implications. The Journal of Organic Chemistry, 67(2), 431-434. doi:10.1021/jo015879vKanemasa, S., Oderaotoshi, Y., & Wada, E. (1999). Asymmetric Conjugate Addition of Thiols to a 3-(2-Alkenoyl)-2-oxazolidinone Catalyzed by the DBFOX/Ph Aqua Complex of Nickel(II) Perchlorate. Journal of the American Chemical Society, 121(37), 8675-8676. doi:10.1021/ja991064gEmori, E., Arai, T., Sasai, H., & Shibasaki, M. (1998). A Catalytic Michael Addition of Thiols to α,ÎČ-Unsaturated Carbonyl Compounds:  Asymmetric Michael Additions and Asymmetric Protonations. Journal of the American Chemical Society, 120(16), 4043-4044. doi:10.1021/ja980397vMiyata, O., Shinada, T., Ninomiya, I., Naito, T., Date, T., Okamura, K., & Inagaki, S. (1991). Stereospecific nucleophilic addition reactions to olefins. Addition of thiols to .alpha.,.beta.-unsaturated carboxylic acid derivatives. The Journal of Organic Chemistry, 56(23), 6556-6564. doi:10.1021/jo00023a021KUWAJIMA, I., MUROFUSHI, T., & NAKAMURA, E. (1976). Quaternary Ammonium Fluoride-Catalyzed Conjugate Addition of Thiols to C=C Double Bonds. Synthesis, 1976(09), 602-604. doi:10.1055/s-1976-24133Corma, A., GonzĂĄlez-Arellano, C., Iglesias, M., & SĂĄnchez, F. (2010). Efficient synthesis of vinyl and alkyl sulfides via hydrothiolation of alkynes and electron-deficient olefins using soluble and heterogenized gold complexes catalysts. Applied Catalysis A: General, 375(1), 49-54. doi:10.1016/j.apcata.2009.12.016Delp, S. A., Munro-Leighton, C., Goj, L. A., RamĂ­rez, M. A., Gunnoe, T. B., Petersen, J. L., & Boyle, P. D. (2007). Addition of S−H Bonds across Electron-Deficient Olefins Catalyzed by Well-Defined Copper(I) Thiolate Complexes. Inorganic Chemistry, 46(7), 2365-2367. doi:10.1021/ic070268sPosner, T. (1907). BeitrĂ€ge zur Kenntnis der ungesĂ€ttigten Verbindungen. — V. Über die Addition von Mercaptanen an ungesĂ€ttigte SĂ€uren. Berichte der deutschen chemischen Gesellschaft, 40(4), 4788-4794. doi:10.1002/cber.190704004134Ipatieff, V. N., Pines, H., & Friedman, B. S. (1938). Reaction of Aliphatic Olefins with Thiophenol1. Journal of the American Chemical Society, 60(11), 2731-2734. doi:10.1021/ja01278a055Screttas, C. G., & Micha-Screttas, M. (1979). Markownikoff two-step hydrolithiation of .alpha.-olefins. Transformation of secondary and tertiary alkyl phenyl sulfides to the relevant alkyllithium reagents. The Journal of Organic Chemistry, 44(5), 713-719. doi:10.1021/jo01319a011Mukaiyama, T., Izawa, T., Saigo, K., & Takei, H. (1973). ADDITION REACTION OF THIOL TO OLEFIN BY THE USE OF TiCl4. Chemistry Letters, 2(4), 355-356. doi:10.1246/cl.1973.355Belley, M., & Zamboni, R. (1989). Addition of thiols to styrenes: formation of benzylic thioethers. The Journal of Organic Chemistry, 54(5), 1230-1232. doi:10.1021/jo00266a053WeĂŻwer, M., Coulombel, L., & Duñach, E. (2006). Regioselective indium(iii) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem. Commun., (3), 332-334. doi:10.1039/b513946eKano, K., Takeuchi, M., Hashimoto, S., & Yoshidat, Z. (1990). Hemin-Catalyzed Addition Reactions of Thiophenols to Styrene. Chemistry Letters, 19(8), 1381-1384. doi:10.1246/cl.1990.1381Takeuchi, M., Shimakoshi, H., & Kano, K. (1994). (Porphinato)iron-Catalyzed Addition Reactions of Thiols to Alkenes via (.sigma.-Alkyl)iron(II) Complexes. Organometallics, 13(4), 1208-1213. doi:10.1021/om00016a025Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42(23), 3791-3794. doi:10.1016/s0040-4039(01)00570-6Menggenbateer, Narsireddy, M., Ferrara, G., Nishina, N., Jin, T., & Yamamoto, Y. (2010). Gold-catalyzed regiospecific intermolecular hydrothiolation of allenes. Tetrahedron Letters, 51(35), 4627-4629. doi:10.1016/j.tetlet.2010.06.125Yang, J., Sabarre, A., Fraser, L. R., Patrick, B. O., & Love, J. A. (2009). Synthesis of 1,1-Disubstituted Alkyl Vinyl Sulfides via Rhodium-Catalyzed Alkyne Hydrothiolation: Scope and Limitations. The Journal of Organic Chemistry, 74(1), 182-187. doi:10.1021/jo801644sEnthaler, S., Junge, K., & Beller, M. (2008). Eisenkatalyse – ein nachhaltiges Prinzip mit Perspektive? Angewandte Chemie, 120(18), 3363-3367. doi:10.1002/ange.200800012Enthaler, S., Junge, K., & Beller, M. (2008). Sustainable Metal Catalysis with Iron: From Rust to a Rising Star? Angewandte Chemie International Edition, 47(18), 3317-3321. doi:10.1002/anie.200800012Junge, K., Schröder, K., & Beller, M. (2011). Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chemical Communications, 47(17), 4849. doi:10.1039/c0cc05733aBolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 104(12), 6217-6254. doi:10.1021/cr040664hKischel, J., Jovel, I., Mertins, K., Zapf, A., & Beller, M. (2006). A Convenient FeCl3-Catalyzed Hydroarylation of Styrenes. Organic Letters, 8(1), 19-22. doi:10.1021/ol0523143Moreau, B., Wu, J. Y., & Ritter, T. (2009). Iron-Catalyzed 1,4-Addition of α-Olefins to Dienes. Organic Letters, 11(2), 337-339. doi:10.1021/ol802524rMichaux, J., Terrasson, V., Marque, S., Wehbe, J., Prim, D., & Campagne, J.-M. (2007). Intermolecular FeCl3-Catalyzed Hydroamination of Styrenes. European Journal of Organic Chemistry, 2007(16), 2601-2603. doi:10.1002/ejoc.200700023Schröder, K., Enthaler, S., Join, B., Junge, K., & Beller, M. (2010). Iron-Catalyzed Epoxidation of Aromatic Olefins and 1,3-Dienes. Advanced Synthesis & Catalysis, 352(10), 1771-1778. doi:10.1002/adsc.201000091Kischel, J., Michalik, D., Zapf, A., & Beller, M. (2007). FeCl3-Catalyzed Addition of 1,3-Dicarbonyl Compounds to Aromatic Olefins. Chemistry – An Asian Journal, 2(7), 909-914. doi:10.1002/asia.200700055Cabrero-Antonino, J. R., Leyva-PĂ©rez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096Hashimoto, T., Kutubi, S., Izumi, T., Rahman, A., & Kitamura, T. (2011). Catalytic hydroarylation of alkynes with arenes in the presence of FeCl3 and AgOTf. Journal of Organometallic Chemistry, 696(1), 99-105. doi:10.1016/j.jorganchem.2010.08.009Driller, K. M., Klein, H., Jackstell, R., & Beller, M. (2009). Eisen-katalysierte Carbonylierungen: selektive und effiziente Synthese von Succinimiden. Angewandte Chemie, 121(33), 6157-6160. doi:10.1002/ange.200902078Driller, K. M., Klein, H., Jackstell, R., & Beller, M. (2009). Iron-Catalyzed Carbonylation: Selective and Efficient Synthesis of Succinimides. Angewandte Chemie International Edition, 48(33), 6041-6044. doi:10.1002/anie.200902078Driller, K. M., Prateeptongkum, S., Jackstell, R., & Beller, M. (2010). Eine allgemeine und selektive Eisen-katalysierte Aminocarbonylierung von Alkinen: Synthese von Acryl- und ZimtsĂ€ureamiden. Angewandte Chemie, 123(2), 558-562. doi:10.1002/ange.201005823Driller, K. M., Prateeptongkum, S., Jackstell, R., & Beller, M. (2010). A General and Selective Iron-Catalyzed Aminocarbonylation of Alkynes: Synthesis of Acryl- and Cinnamides. Angewandte Chemie International Edition, 50(2), 537-541. doi:10.1002/anie.201005823Bera, K., Sarkar, S., Biswas, S., Maiti, S., & Jana, U. (2011). Iron-Catalyzed Synthesis of Functionalized 2H-Chromenes via Intramolecular Alkyne−Carbonyl Metathesis. The Journal of Organic Chemistry, 76(9), 3539-3544. doi:10.1021/jo2000012Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie, 121(31), 5694-5695. doi:10.1002/ange.200902237Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie International Edition, 48(31), 5586-5587. doi:10.1002/anie.200902237Bedford, R. B., Nakamura, M., Gower, N. J., Haddow, M. F., Hall, M. A., Huwe, M., 
 Okopie, R. A. (2009). Iron-catalysed Suzuki coupling? A cautionary tale. Tetrahedron Letters, 50(45), 6110-6111. doi:10.1016/j.tetlet.2009.08.022Vargas, C., Mariana Balu, A., Manuel Campelo, J., Gonzalez-Arellano, C., Luque, R., & Angel Romero, A. (2010). Towards Greener and More Efficient C-C and C-Heteroatom Couplings: Present and Future. Current Organic Synthesis, 7(6), 568-586. doi:10.2174/157017910794328547Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metalltriflimidate sind bessere Katalysatoren fĂŒr die organische Synthese als Metalltriflate - der Effekt eines stark delokalisierten Gegenions. Angewandte Chemie, 122(43), 8032-8060. doi:10.1002/ange.200906407Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407Leyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558eCoulombel, L., Grau, F., WeĂŻwer, M., Favier, I., Chaminade, X., Heumann, A., 
 Duñach, E. (2008). LewisSuper‐Acid Catalyzed Cyclizations: A New Route to Fragrance Compounds. Chemistry & Biodiversity, 5(6), 1070-1082. doi:10.1002/cbdv.200890086Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp C−H Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593BaleizĂŁo, C., & Berberan-Santos, M. N. (2009). How Fast is a Fast Equilibrium? A New View of Reversible Reactions. ChemPhysChem, 10(1), 199-205. doi:10.1002/cphc.200800350Hamilton, G. L., Kang, E. J., Mba, M., & Toste, F. D. (2007). A Powerful Chiral Counterion Strategy for Asymmetric Transition Metal Catalysis. Science, 317(5837), 496-499. doi:10.1126/science.1145229Ratjen, L., GarcĂ­a-GarcĂ­a, P., Lay, F., Beck, M. E., & List, B. (2010). Disulfonimid-katalysierte asymmetrische vinyloge und bisvinyloge Mukaiyama-Aldolreaktionen. Angewandte Chemie, 123(3), 780-784. doi:10.1002/ange.201005954Ratjen, L., GarcĂ­a-GarcĂ­a, P., Lay, F., Beck, M. E., & List, B. (2010). Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions. Angewandte Chemie International Edition, 50(3), 754-758. doi:10.1002/anie.20100595

    Homogeneous gold-catalyzed cyclization reactions of alkynes with N- and S-nucleophiles

    No full text
    This review covers the formation of N- and S-containing heterocycles, initiated by gold-catalyzed nucleophilic attack of N- or S-nucleophiles onto alkynes. These types of nucleophiles have been somewhat overlooked as compared to their C- or O-counterparts in other reviews. In this particular work, their intramolecular gold-mediated attack onto alkynes is reviewed in depth. It is structured in such a fashion that the reader will get a clear view of which substrates react in which cyclization mode
    corecore