560 research outputs found

    Electric field and exciton structure in CdSe nanocrystals

    Full text link
    Quantum Stark effect in semiconductor nanocrystals is theoretically investigated, using the effective mass formalism within a 4×44\times 4 Baldereschi-Lipari Hamiltonian model for the hole states. General expressions are reported for the hole eigenfunctions at zero electric field. Electron and hole single particle energies as functions of the electric field (EQD\mathbf{E}_{QD}) are reported. Stark shift and binding energy of the excitonic levels are obtained by full diagonalization of the correlated electron-hole Hamiltonian in presence of the external field. Particularly, the structure of the lower excitonic states and their symmetry properties in CdSe nanocrystals are studied. It is found that the dependence of the exciton binding energy upon the applied field is strongly reduced for small quantum dot radius. Optical selection rules for absorption and luminescence are obtained. The electric-field induced quenching of the optical spectra as a function of EQD\mathbf{E}_{QD} is studied in terms of the exciton dipole matrix element. It is predicted that photoluminescence spectra present anomalous field dependence of the emission lines. These results agree in magnitude with experimental observation and with the main features of photoluminescence experiments in nanostructures.Comment: 9 pages, 7 figures, 1 tabl

    Cytomegalovirus, Epstein–Barr virus and risk of breast cancer before age 40 years: a case–control study

    Get PDF
    We investigated whether there is an association between cytomegalovirus (CMV) and Epstein-Barr virus (EBV) IgG levels and risk of breast cancer before age 40 years. CMV and EBV IgG levels were measured in stored plasma from 208 women with breast cancer and 169 controls who participated in the Australian Breast Cancer Family Study (ABCFS), a population-based case-control study. CMV and EBV IgG values were measured in units of optical density (OD). Cases and controls did not differ in seropositivity for CMV (59 and 57% respectively; P=0.8) or EBV (97 and 96% respectively; P=0.7). In seropositive women, mean IgG values were higher in cases than controls for CMV (1.20 vs 0.98 OD, P=0.005) but not for EBV (2.65 vs 2.57 OD, P=0.5). The adjusted odds ratios per OD unit were 1.46 (95% CI 1.06-2.03) for CMV IgG and 1.11 (0.93-1.33) for EBV IgG. The higher mean CMV IgG levels found in women with breast cancer could be the result of a more recent infection with CMV, and may mean that late exposure to CMV is a risk factor for breast cancer

    Neurofibrillary tangle pathology and Braak staging in chronic epilepsy in relation to traumatic brain injury and hippocampal sclerosis: a post-mortem study

    Get PDF
    The long-term pathological effects of chronic epilepsy on normal brain ageing are unknown. Previous clinical and epidemiological studies show progressive cognitive decline in subsets of patients and an increased prevalence of Alzheimer's disease in epilepsy. In a post-mortem series of 138 patients with long-term, mainly drug-resistant epilepsy, we carried out Braak staging for Alzheimer's disease neurofibrillary pathology using tau protein immunohistochemistry. The stages were compared with clinicopathological factors, including seizure history and presence of old traumatic brain injury. Overall, 31% of cases were Braak Stage 0, 36% Stage I/II, 31% Stage III/IV and 2% Stage V/VI. The mean age at death was 56.5 years and correlated with Braak stage (P < 0.001). Analysis of Braak stages within age groups showed a significant increase in mid-Braak stages (III/IV), in middle age (40–65 years) compared with data from an ageing non-epilepsy series (P < 0.01). There was no clear relationship between seizure type (generalized or complex partial), seizure frequency, age of onset and duration of epilepsy with Braak stage although higher Braak stages were noted with focal more than with generalized epilepsy syndromes (P < 0.01). In 30% of patients, there was pathological evidence of traumatic brain injury that was significantly associated with higher Braak stages (P < 0.001). Cerebrovascular disease present in 40.3% and cortical malformations in 11.3% were not significantly associated with Braak stage. Astrocytic-tau protein correlated with the presence of both traumatic brain injury (P < 0.01) and high Braak stage (P < 0.001). Hippocampal sclerosis, identified in 40% (bilateral in 48%), was not associated with higher Braak stages, but asymmetrical patterns of tau protein accumulation within the sclerotic hippocampus were noted. In over half of patients with cognitive decline, the Braak stage was low indicating causes other than Alzheimer's disease pathology. In summary, there is evidence of accelerated brain ageing in severe chronic epilepsy although progression to high Braak stages was infrequent. Traumatic brain injury, but not seizures, was associated with tau protein accumulation in this series. It is likely that Alzheimer's disease pathology is not the sole explanation for cognitive decline associated with epilepsy

    Common psychiatric comorbidities in epilepsy: How big of a problem is it?

    Get PDF
    Psychiatric illness and epilepsy commonly co-occur in adults and in children and adolescents. Theories of comorbidity are complex, but recurring associations between the conditions suggest overlap that is more than simple co-occurrence. Common underlying pathophysiology may imply that epilepsy itself may constituently include psychiatric symptoms. Conditions such as depression or cognitive difficulties commonly occur and in some cases, are considered to be associated with specific epilepsy characteristics such as localization or seizure type. Regardless of etiologic attributions to psychiatric comorbidity, it is clear today that treatment for epilepsy needs to target psychiatric illness. In many cases, quality-of-life improvements depend more upon addressing psychiatric symptoms than seizures themselves

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Cancer stem cells in tumor heterogeneity.

    Get PDF
    Cancer cells within a given tumor were long regarded as a largely homogeneous group of cells originating from a common progenitor cell. However, it is increasingly appreciated that there is a considerable heterogeneity within tumors also on the tumor cell level. This heterogeneity extends to virtually all measurable properties of cancer cells, ranging from differentiation state, proliferation rate, migratory and invasive capacity to size, and therapeutic response. Such heterogeneity likely represents a major therapeutic hurdle, but the mechanisms underlying its emergence remain poorly understood and a controversial topic. The cancer stem cell model of tumor progression has gained increasing support during the past several years. In this review, I will discuss some major implications of the cancer stem cell hypothesis on the origins of tumor heterogeneity, focusing both on heterogeneity within the tumor cells proper and on potential transdifferentiation of cancer stem cells into stromal and endothelial lineages, as well as on heterogeneity of the therapeutic response. Evidence for and against a direct and causal role of cancer stem cells in the emergence of tumor heterogeneity will be weighed and alternative explanations for apparently contradictory observations discussed. Finally, I will discuss the potential origins of cancer stem cells and the various implications of origin to the contribution to tumor heterogeneity, and outline some future directions

    Transplantation of Neuronal-Primed Human Bone Marrow Mesenchymal Stem Cells in Hemiparkinsonian Rodents

    Get PDF
    Bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promise in in vitro neuronal differentiation and in cellular therapy for neurodegenerative disorders, including Parkinson' disease. However, the effects of intracerebral transplantation are not well defined, and studies do not agreed on the optimal neuronal differentiation method. Here, we investigated three growth factor-based neuronal differentiation procedures (using FGF-2/EGF/PDGF/SHH/FGF-8/GDNF), and found all to be capable of eliciting an immature neural phenotype, in terms of cell morphology and gene/protein expression. The neuronal-priming (FGF-2/EGF) method induced neurosphere-like formation and the highest NES and NR4A2 expression by hMSCs. Transplantation of undifferentiated and neuronal-primed hMSCs into the striatum and substantia nigra of 6-OHDA-lesioned hemiparkinsonian rats revealed transient graft survival of 7 days, despite the reported immunosuppressive properties of MSCs and cyclosporine-immunosuppression of rats. Neither differentiation of hMSCs nor induction of host neurogenesis was observed at injection sites, and hMSCs continued producing mesodermal fibronectin. Strategies for improving engraftment and differentiation post-transplantation, such as prior in vitro neuronal-priming, nigral and striatal grafting, and co-transplantation of olfactory ensheathing cells that promote neural regeneration, were unable to provide advantages. Innate inflammatory responses (Iba-1-positive microglia/macrophage and GFAP-positive astrocyte activation and accumulation) were detected around grafts within 7 days. Our findings indicate that growth factor-based methods allow hMSC differentiation toward immature neuronal-like cells, and contrary to previous reports, only transient survival and engraftment of hMSCs occurs following transplantation in immunosuppressed hemiparkinsonian rats. In addition, suppression of host innate inflammatory responses may be a key factor for improving hMSC survival and engraftment

    Zebrafish Kidney Phagocytes Utilize Macropinocytosis and Ca2+-Dependent Endocytic Mechanisms

    Get PDF
    Background: The innate immune response constitutes the first line of defense against invading pathogens and consists of a variety of immune defense mechanisms including active endocytosis by macrophages and granulocytes. Endocytosis can be used as a reliable measure of selective and non-selective mechanisms of antigen uptake in the early phase of an immune response. Numerous assays have been developed to measure this response in a variety of mammalian and fish species. The small size of the zebrafish has prevented the large-scale collection of monocytes/macrophages and granulocytes for these endocytic assays. Methodology/Principal Findings: Pooled zebrafish kidney hematopoietic tissues were used as a source of phagocytic cells for flow-cytometry based endocytic assays. FITC-Dextran, Lucifer Yellow and FITC-Edwardsiella ictaluri were used to evaluate selective and non-selective mechanisms of uptake in zebrafish phagocytes. Conclusions/Significance: Zebrafish kidney phagocytes characterized as monocytes/macrophages, neutrophils and lymphocytes utilize macropinocytosis and Ca 2+-dependant endocytosis mechanisms of antigen uptake. These cells do not appear to utilize a mannose receptor. Heat-killed Edwardsiella ictaluri induces cytoskeletal interactions for internalization in zebrafish kidney monocytes/macrophages and granulocytes. The proposed method is easy to implement and should prove especially useful in immunological, toxicological and epidemiological research

    Chemically-Induced RAT Mesenchymal Stem Cells Adopt Molecular Properties of Neuronal-Like Cells but Do Not Have Basic Neuronal Functional Properties

    Get PDF
    Induction of adult rat bone marrow mesenchymal stem cells (MSC) by means of chemical compounds (β-mercaptoethanol, dimethyl sulfoxide and butylated hydroxyanizole) has been proposed to lead to neuronal transdifferentiation, and this protocol has been broadly used by several laboratories worldwide. Only a few hours of MSC chemical induction using this protocol is sufficient for the acquisition of neuronal-like morphology and neuronal protein expression. However, given that cell death is abundant, we hypothesize that, rather than true neuronal differentiation, this particular protocol leads to cellular toxic effects. We confirm that the induced cells with neuronal-like morphology positively stained for NF-200, S100, β-tubulin III, NSE and MAP-2 proteins. However, the morphological and molecular changes after chemical induction are also associated with an increase in the apoptosis of over 50% of the plated cells after 24 h. Moreover, increased intracellular cysteine after treatment indicates an impairment of redox circuitry during chemical induction, and in vitro electrophysiological recordings (patch-clamp) of the chemically induced MSC did not indicate neuronal properties as these cells do not exhibit Na+ or K+ currents and do not fire action potentials. Our findings suggest that a disruption of redox circuitry plays an important role in this specific chemical induction protocol, which might result in cytoskeletal alterations and loss of functional ion-gated channels followed by cell death. Despite the neuronal-like morphology and neural protein expression, induced rat bone marrow MSC do not have basic functional neuronal properties, although it is still plausible that other methods of induction and/or sources of MSC can achieve a successful neuronal differentiation in vitro
    corecore