466 research outputs found

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Mechanisms of leukocyte lipid body formation and function in inflammation

    Full text link
    An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation

    Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane

    Get PDF
    Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity

    Introduction to the Conceptualisation of Environmental Citizenship for Twenty-First-Century Education

    Get PDF
    The EU’s growth strategy (Europe 2020) and the European vision for green, circular and low-carbon economy in line with the EU 2050 (EU-roadmap 2050) give par- ticular attention to citizens’ participation and engagement and therefore to Environmental Citizenship. Environmental Citizenship has been an influential con- cept in many different arenas such as economy, policy, philosophy, corporation management and marketing, which could also be better exploited and established in the field of education. Environmental Citizenship is recognized as an important aspect in addressing global environmental problems such as climate change (Stern 2011; Ockwell et al. 2009) whilst providing support to pro-environmental organisa- tions and individuals, contributing also to public pressure for political action (sign- ing petitions, writing to politicians and newspapers). Many varied definitions of Environmental Citizenship can be found within the literature. Some of them are quite similar, and important overlaps can be observed; however, others can be quite different with contradictions in their philosophy and approach. According to Dobson (2010), Environmental Citizenship refers to pro-environmental behaviour, in public and in private, driven by a belief in fairness of the distribution of environmental goods, in participation and in the co-creation of sustainability policy. It is about the active participation of citizens in moving towards sustainability. Education and especially environmental discourses in science education have a lot to contribute in adopting and promoting Environmental Citizenship. However, the conceptualisation of Environmental Citizenship in educational context remains an imperative need. The under-explored (until now) potential for pro-environmental behaviour change through Environmental Citizenship should be further emphasised (Dobson 2010) and can contribute greatly to a more sustainable world.info:eu-repo/semantics/publishedVersio

    Low frequency of TERT promoter mutations in gastrointestinal stromal tumors (GISTs).

    Get PDF
    Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c. − 124 and c. − 146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c. − 124C4T mutation was the most common event, present in 2.3% (3/130), and the c. − 146C4T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient’s clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.This project was partially supported by Barretos Cancer Hospital internal research funds (PAIP) and CNPq Universal Grant (476192/2013-7) to RMR. NCC is a recipient of an FAPESP Doctoral Fellowship (2013/25787-3). Further funding from the project ‘Microenvironment, metabolism and cancer’ that was partially supported by Programa Operacional Regional do Norte (ON.2—O Novo Norte) under the Quadro de ReferĂȘncia EstratĂ©gico Nacional (QREN) and the Fundo Europeu de Desenvolvimento Regional (FEDER). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education that is partially supported by the FCT

    A Novel Rho-Like Protein TbRHP Is Involved in Spindle Formation and Mitosis in Trypanosomes

    Get PDF
    Background: In animals and fungi Rho subfamily small GTPases are involved in signal transduction, cytoskeletal function and cellular proliferation. These organisms typically possess multiple Rho paralogues and numerous downstream effectors, consistent with the highly complex contributions of Rho proteins to cellular physiology. By contrast, trypanosomatids have a much simpler Rho-signaling system, and the Trypanosoma brucei genome contains only a single divergent Rho-related gene, TbRHP (Tb927.10.6240). Further, only a single RhoGAP-like protein (Tb09.160.4180) is annotated, contrasting with the.70 Rho GAP proteins from Homo sapiens. We wished to establish the function(s) of TbRHP and if Tb09.160.4180 is a potential GAP for this protein. Methods/Findings: TbRHP represents an evolutionarily restricted member of the Rho GTPase clade and is likely trypanosomatid restricted. TbRHP is expressed in both mammalian and insect dwelling stages of T. brucei and presents with a diffuse cytoplasmic location and is excluded from the nucleus. RNAi ablation of TbRHP results in major cell cycle defects and accumulation of multi-nucleated cells, coinciding with a loss of detectable mitotic spindles. Using yeast two hybrid analysis we find that TbRHP interacts with both Tb11.01.3180 (TbRACK), a homolog of Rho-kinase, and the sole trypanosome RhoGAP protein Tb09.160.4180, which is related to human OCRL. Conclusions: Despite minimization of the Rho pathway, TbRHP retains an important role in spindle formation, and henc

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Trait determinants of impulsive behavior: a comprehensive analysis of 188 rats

    Get PDF
    Impulsivity is a naturally occurring behavior that, when accentuated, can be found in a variety of neuropsychiatric disorders. The expression of trait impulsivity has been shown to change with a variety of factors, such as age and sex, but the existing literature does not reflect widespread consensus regarding the influence of modulating effects. We designed the present study to investigate, in a cohort of significant size (188 rats), the impact of four specific parameters, namely sex, age, strain and phase of estrous cycle, using the variable delay-to-signal (VDS) task. This cohort included (i) control animals from previous experiments; (ii) animals specifically raised for this study; and (iii) animals previously used for breeding purposes. Aging was associated with a general decrease in action impulsivity and an increase in delay tolerance. Females generally performed more impulsive actions than males but no differences were observed regarding delay intolerance. In terms of estrous cycle, no differences in impulsive behavior were observed and regarding strain, Wistar Han animals were, in general, more impulsive than Sprague-Dawley. In addition to further confirming, in a substantial study cohort, the decrease in impulsivity with age, we have demonstrated that both the strain and sex influences modulate different aspects of impulsive behavior manifestations.FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE) and the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement as well as national funds, through the Foundation for Science and Technology (FCT) [projects POCI-01–0145-FEDER-007038, NORTE-01-0145-FEDER-000013, NORTE-01-0145-FEDER-000023 and PTDC/NEU-SCC/5301/2014]. Researchers were supported by FCT [grant numbers SFRH/BD/52291/2013 to ME and PD/BD/114117/2015 to MRG via Inter-University Doctoral Programme in Ageing and Chronic Disease, PhDOC; PDE/BDE/113601/2015 to PSM via PhD Program in Health Sciences (Applied) and Phd-iHES; SFRH/BD/109111/2015 to AMC; SFRH/BD/51061/2010 to MMC; SFRH/SINTD/60126/2009 to AM; SFRH/BD/98675/2013 to BC; IF/00883/2013 to AJR; IF/00111/2013 to AJS; SFRH/BPD/80118/2011 to HLA]info:eu-repo/semantics/publishedVersio

    Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Get PDF
    João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target
    • 

    corecore