123 research outputs found

    Vegetation Type and Decomposition Priming Mediate Brackish Marsh Carbon Accumulation Under Interacting Facets of Global Change

    Get PDF
    Coastal wetland carbon pools are globally important, but their response to interacting facets of global change remain unclear. Numerical models neglect species-specific vegetation responses to sea level rise (SLR) and elevated CO2 (eCO2) that are observed in field experiments, while field experiments cannot address the long-term feedbacks between flooding and soil growth that models show are important. Here, we present a novel numerical model of marsh carbon accumulation parameterized with empirical observations from a long-running eCO2 experiment in an organic rich, brackish marsh. Model results indicate that eCO2 and SLR interact synergistically to increase soil carbon burial, driven by shifts in plant community composition and soil volume expansion. However, newly parameterized interactions between plant biomass and decomposition (i.e. soil priming) reduce the impact of eCO2 on marsh survival, and by inference, the impact of eCO2 on soil carbon accumulation

    The ecology of methane in streams and rivers: patterns, controls, and global significance

    Get PDF
    Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO₂) is the major end‐product of ecosystem respiration, methane (CH₄) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH₄, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global‐scale estimate of fluvial CH₄ efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH₄ dynamics. Current understanding of CH₄ in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH₄ to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH₄ production and loss. CH₄ makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH₄ sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH₄ and we estimate an annual global emission of 26.8 Tg CH₄, equivalent to ~15‐40% of wetland and lake effluxes, respectively. Less clear is the role of CH₄ oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH₄ generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its extreme redox status and low solubility result in high spatial and temporal variance of CH₄ in fluvial environments, which presents a substantial challenge for understanding its larger‐scale dynamics. Further understanding of CH₄ production and consumption, anaerobic metabolism, and ecosystem energetics in streams and rivers can be achieved through more directed studies and comparison with knowledge from terrestrial, wetland, and aquatic disciplines."Support for this paper was provided by funding from the North Temperate Lakes LTER program, NSF DEB‐0822700."https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-102

    Solid-State Au/Hg Microelectrode for the Investigation of Fe and Mn Cycling in a Freshwater Wetland: Implications for Methane Production

    Get PDF
    The solid-state voltammetric gold-amalgam microelectrode was used to measure multiple redox species (O, S, Fe and Mn) in situ at (sub)millimeter vertical resolution to elucidate rhizosphere processes in Jug Bay wetlands. In vegetated soil, a classic diagenetic redox sequence without any dissolved sulfide was observed in summer. However, the rhizosphere can be quite variable which is due to the introduction of O2 to the anoxic sediments by plants. In nonvegetated soil, the vertical concentration–depth profiles were relatively constant. The presence of Fe(II), Mn(II) and soluble Fe(III) in deeper sediments indicates the oxidation of Fe(II) as well as the nonreductive dissolution of Fe(III) and the reductive dissolution of Fe(III) and Mn(III, IV) solids. Mn(III, IV) and Fe(III) redox chemistry is important in organic matter mineralization mediated by bacteria and in suppressing methane formation. In addition, Mn(III, IV) also can oxidize Fe(II) to supply Fe(III) for bacterial Fe(III) reduction. Studying Fe and Mn cycling via voltammetric methods can give insights to methane production and loss as there is no methane sensor for sediment work at present

    A process-based model of conifer forest structure and function with special emphasis on leaf lifespan

    Get PDF
    We describe the University of Sheffield Conifer Model (USCM), a process-based approach for simulating conifer forest carbon, nitrogen, and water fluxes by up-scaling widely applicable relationships between leaf lifespan and function. The USCM is designed to predict and analyze the biogeochemistry and biophysics of conifer forests that dominated the ice-free high-latitude regions under the high pCO2 “greenhouse” world 290–50 Myr ago. It will be of use in future research investigating controls on the contrasting distribution of ancient evergreen and deciduous forests between hemispheres, and their differential feedbacks on polar climate through the exchange of energy and materials with the atmosphere. Emphasis is placed on leaf lifespan because this trait can be determined from the anatomical characteristics of fossil conifer woods and influences a range of ecosystem processes. Extensive testing of simulated net primary production and partitioning, leaf area index, evapotranspiration, nitrogen uptake, and land surface energy partitioning showed close agreement with observations from sites across a wide climatic gradient. This indicates the generic utility of our model, and adequate representation of the key processes involved in forest function using only information on leaf lifespan, climate, and soils

    Operationalizing marketable blue carbon

    Get PDF
    The global carbon sequestration and avoided emissions potentially achieved via blue carbon is high (∼3% of annual global greenhouse gas emissions); however, it is limited by multidisciplinary and interacting uncertainties spanning the social, governance, financial, and technological dimensions. We compiled a transdisciplinary team of experts to elucidate these challenges and identify a way forward. Key actions to enhance blue carbon as a natural climate solution include improving policy and legal arrangements to ensure equitable sharing of benefits; improving stewardship by incorporating indigenous knowledge and values; clarifying property rights; improving financial approaches and accounting tools to incorporate co-benefits; developing technological solutions for measuring blue carbon sequestration at low cost; and resolving knowledge gaps regarding blue carbon cycles. Implementing these actions and operationalizing blue carbon will achieve measurable changes to atmospheric greenhouse gas concentrations, provide multiple co-benefits, and address national obligations associated with international agreements

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously
    corecore