43 research outputs found

    Perceptual expertise improves category detection in natural scenes

    Get PDF
    There is much debate about how detection, categorization, and within-category identification relate to one another during object recognition. Whether these tasks rely on partially shared perceptual mechanisms may be determined by testing whether training on one of these tasks facilitates performance on another. In the present study we asked whether expertise in discriminating objects improves the detection of these objects in naturalistic scenes. Self-proclaimed car experts (N = 34) performed a car discrimination task to establish their level of expertise, followed by a visual search task where they were asked to detect cars and people in hundreds of photographs of natural scenes. Results revealed that expertise in discriminating cars was strongly correlated with car detection accuracy. This effect was specific to objects of expertise, as there was no influence of car expertise on person detection. These results indicate a close link between object discrimination and object detection performance, which we interpret as reflecting partially shared perceptual mechanisms and neural representations underlying these tasks: the increased sensitivity of the visual system for objects of expertise – as a result of extensive discrimination training – may benefit both the discrimination and the detection of these objects. Alternative interpretations are also discussed

    Top-down Modulations in the Visual Form Pathway Revealed with Dynamic Causal Modeling

    Get PDF
    Perception entails interactions between activated brain visual areas and the records of previous sensations, allowing for processes like figure–ground segregation and object recognition. The aim of this study was to characterize top-down effects that originate in the visual cortex and that are involved in the generation and perception of form. We performed a functional magnetic resonance imaging experiment, where subjects viewed 3 groups of stimuli comprising oriented lines with different levels of recognizable high-order structure (none, collinearity, and meaning). Our results showed that recognizable stimuli cause larger activations in anterior visual and frontal areas. In contrast, when stimuli are random or unrecognizable, activations are greater in posterior visual areas, following a hierarchical organization where areas V1/V2 were less active with “collinearity” and the middle occipital cortex was less active with “meaning.” An effective connectivity analysis using dynamic causal modeling showed that high-order visual form engages higher visual areas that generate top-down signals, from multiple levels of the visual hierarchy. These results are consistent with a model in which if a stimulus has recognizable attributes, such as collinearity and meaning, the areas specialized for processing these attributes send top-down messages to the lower levels to facilitate more efficient encoding of visual form

    Eccentricity-dependent temporal contrast tuning in human visual cortex measured with fMRI.

    Get PDF
    Cells in the peripheral retina tend to have higher contrast sensitivity and respond at higher flicker frequencies than those closer to the fovea. Although this predicts increased behavioural temporal contrast sensitivity in the peripheral visual field, this effect is rarely observed in psychophysical experiments. It is unknown how temporal contrast sensitivity is represented across eccentricity within cortical visual field maps and whether such sensitivities reflect the response properties of retinal cells or psychophysical sensitivities. Here, we used functional magnetic resonance imaging (fMRI) to measure contrast sensitivity profiles at four temporal frequencies in five retinotopically-defined visual areas. We also measured population receptive field (pRF) parameters (polar angle, eccentricity, and size) in the same areas. Overall contrast sensitivity, independent of pRF parameters, peaked at 10Hz in all visual areas. In V1, V2, V3, and V3a, peripherally-tuned voxels had higher contrast sensitivity at a high temporal frequency (20Hz), while hV4 more closely reflected behavioural sensitivity profiles. We conclude that our data reflect a cortical representation of the increased peripheral temporal contrast sensitivity that is already present in the retina and that this bias must be compensated later in the cortical visual pathway

    Pure alexia and covert reading: Evidence from Stroop tasks

    No full text
    Patients with pure alexia (also referred to as letter-by-letter readers) show a marked word-length effect when naming visually presented words, evidenced by a monotonic increase in response time (or decrease in accuracy) as a function of the number of letters in the string. Interestingly, despite the difficulty in overtly reporting the identity of some words, many patients exhibit fast and above-chance access to lexical and/or semantic information for the same words. To explore the extent of this covert reading, we examined the degree of interference afforded by the inconsistent (word identity and colour label do not match) versus neutral condition in a Stroop task in a pure alexic patient, EL. EL shows evidence of covert reading on a semantic categorisation task and a lexical decision task. She also demonstrates covert reading by exhibiting Stroop interference of the same magnitude as a matched control subject, when naming the colour of the ink in which a word is printed. When the word shares some but not all letters with the colour name (BLOW instead of BLUE), neither subject shows interference. In contrast with the control subject, EL does not show Stroop interference when various orthographic changes (degraded visual input, cursive font) or phonological or semantic changes are made to the word. These findings indicate that although some implicit processing of words may be possible, this processing is rather rudimentary. Not surprising, this implicit activation may be insufficient to support overt word identification. We explain these findings in the context of a single, integrated account of pure alexia.</p

    Hemispatial neglect: its effects on visual perception and visually guided grasping

    No full text
    Hemispatial neglect is a neurological disorder characterized by a failure to represent information appearing in the hemispace contralateral to a brain lesion. In addition to the perceptual consequences of hemispatial neglect, several authors have reported that hemispatial neglect impairs visually guided movements. Others have reported that the extent of the impairment depends on the type of visually guided task. Finally, in some cases, neglect has been shown to impair visual perception without affecting visuomotor control in relation to the very same stimuli. While neglect patients may be able to successfully pick up an object they have difficulty perceiving in its entirety, it does not mean that they are picking up the object in the same way that a neurologically intact individual would. In the current study, patients with hemispatial neglect were presented with irregularly shaped objects, directly in front of them, that lacked clear symmetry and required an analysis of their entire contour in order to calculate stable grasp points. In a perceptual discrimination task, the neglect patients had difficulty distinguishing one object from another on the basis of their shape. In a grasping task, the neglect patients showed more variance in the position of their grasp on the target objects than their control subjects, with an overall shift to the relative right side of the presented objects. The perceptual and visuomotor deficits seen in patients with hemispatial neglect deficits may be the result of an inability to form good structural representations of the entire object for use in visual perception and visuomotor control.</p

    The interaction between central and peripheral processes in handwriting production.

    No full text
    International audienceWritten production studies investigating central processing have ignored research on the peripheral components of movement execution, and vice versa. This study attempts to integrate both approaches and provide evidence that central and peripheral processes interact during word production. French participants wrote regular words (e.g. FORME), irregular words (e.g. FEMME) and pseudo-words (e.g. FARNE) on a digitiser. Pseudo-words yielded longer latencies than regular words. Letter durations were greater for words at earlier letter positions and greater for pseudo-words at the later positions. Letter durations were longer for irregular than regular words. The effect was modulated by the position of the irregularity. These findings indicate that movement production can be affected by lexical and sublexical variables that regulate spelling processes. They suggest that central processing is not completely finished before movement initiation and affects peripheral writing mechanisms in a cascaded manner. Lexical and sublexical processing does not cascade to the same extent
    corecore