382 research outputs found

    Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours

    Get PDF
    The release of anthropogenic toxic pollutants into the atmosphere is a worldwide threat of growing concern. In this regard, it is possible to take advantage of the high versatility of MOFs materials in order to develop new technologies for environmental remediation purposes. Consequently, one of the main scientific challenges to be achieved in the field of MOF research should be to maximize the performance of these solids towards the sensing, capture and catalytic degradation of harmful gases and vapors by means of a rational control of size and reactivity of the pore walls that are directly accessible to guest molecules.The authors are grateful for the generous support by the Spanish Ministries of Economy (project: CTQ2011-22787) and Defense (COINCIDENTE Program) as well as Junta de Andalucia (P09-FQM-4981)

    Computational Insights into the Isomerism of Hexacoordinate Metal–Sarcophagine Complexes: The Relationship between Structure and Stability

    Get PDF
    The hexacoordinate complexes that the macrobicyclic ligands {(NH3)2sar}2+ and {(NMe3)2sar}2+ (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) form with transition metals such as CoIII, CoII and CuII can adopt several isomeric structures. In this article, we have firstly employed DFT methods to compute the relative stability of their Δ-ob3, Δ-ob2lel, Δ-lel2ob and Δ-lel3 isomers, as well as the activation barriers for their interconversion. In agreement with the experimental data, the results show that, in general, the different isomers of the CoIII and CoII complexes present similar free energies, whereas the CuII complexes show a strong tendency towards the lel3 form. In addition, the interplay between the structure and stability of these species has been studied by combining shape maps with a distortion/interaction energy analysis. In contrast to the geometries close to the ideal octahedron that all the studied Co complexes present, the lel3 structures of [Cu{(NH3)2sar}]4+ and [Cu{(NMe3)2sar}]4+ are better described as trigonal prisms. In such structures the ligand adopts a conformation significantly more stable than in the other isomers, and this drives the formation of lel3-[Cu{(NH3)2sar}]4+ and lel3-[Cu{(NMe3)2sar}]4+. Overall, the results show a clear relationship between the stability of a given isomer and its degree of distortion with respect to the ideal octahedron (or trigonal prism), with the latter being ultimately dependent on the transition metal and its radius

    Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives

    Full text link
    The catalytic behavior of metal-organic frameworks of different structures (Fe(BTC), MIL-100(Fe), MIL-100(Cr) and Cu-3(BTC)(2)) was investigated in annulation reaction between 2-methyl-3-buten-2-ol and phenols differing in size (phenol, 2-naphthol). MIL-100(Fe) possessing intermediate Lewis acidity, perfect crystalline structure, and the highest S-BET surface area showed the highest activity (TOF = 0.7 and 1.4h(-1) for phenol and 2-naphthol, respectively) and selectivities to target benzopyran (45% and 65% at 16% of phenol and 2-naphthol conversion, respectively). The increasing strength of Lewis acid centers for MIL-100(Cr) was found to result in the dramatically decreased activity of the catalyst, while negligible conversion of phenols was found over Fe(BTC), characterized by a less ordered framework.M.O. and J.C. acknowledge the Czech Science Foundation for the support (14-07101S) and RNDr. Libor Brabec, CSc. for SEM images.Shamzhy, MV.; Opanasenko, MV.; García Gómez, H.; Cejka, J. (2015). Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives. Microporous and Mesoporous Materials. 202:297-302. doi:10.1016/j.micromeso.2014.10.003S29730220

    Synthesis of metal-organic frameworks by continuous flow

    Get PDF
    A continuous flow process for the synthesis of a metal-organic framework using only water as the reaction medium and requiring only short residence times is described. This affords a new route to scale-up of materials incorporating many of the principles of green chemistry. The process is demonstrated by the synthesis MIL-53(Al) via continuous flow reaction requiring only 5-6 minutes with a space time yield of 1300 kg m-3 d-1. We have demonstrated the synthesis of 500 g of MIL-53(Al) using this process, which can be scaled-up further by simply feeding further solutions of metal salt and ligand through the reactor. The product has a higher surface area and a better colour than a commercially produced sample of this MOF. In addition, a new and effective method for the extraction of terephthalic acid from within the pores of MIL-53(Al) using supercritical ethanol has been developed, representing a new methodology for activation and removal of substrates from porous hosts

    Lean mass, muscle strength, and physical function in a diverse population of men: a population-based cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related declines in lean body mass appear to be more rapid in men than in women but our understanding of muscle mass and function among different subgroups of men and their changes with age is quite limited. The objective of this analysis is to examine racial/ethnic differences and racial/ethnic group-specific cross-sectional age differences in measures of muscle mass, muscle strength, and physical function among men.</p> <p>Methods</p> <p>Data were obtained from the Boston Area Community Health/Bone (BACH/Bone) Survey, a population-based, cross-sectional, observational survey. Subjects included 1,157 black, Hispanic, and white randomly-selected Boston men ages 30-79 y. Lean mass was assessed by dual-energy x-ray absorptiometry. Upper extremity (grip) strength was assessed with a hand dynamometer and lower extremity physical function was derived from walk and chair stand tests. Upper extremity strength and lower extremity physical function were also indexed by lean mass and lean mass was indexed by the square of height.</p> <p>Results</p> <p>Mean age of the sample was 47.5 y. Substantial cross-sectional age differences in grip strength and physical function were consistent across race/ethnicity. Racial/ethnic differences, with and without adjustment for covariates, were evident in all outcomes except grip strength. Racial differences in lean mass did not translate into parallel differences in physical function. For instance, multivariate modeling (with adjustments for age, height, fat mass, self-rated health and physical activity) indicated that whereas total body lean mass was 2.43 kg (approximately 5%) higher in black compared with white men, black men had a physical function score that was approximately 20% lower than white men.</p> <p>Conclusions</p> <p>In spite of lower levels of lean mass, the higher levels of physical function observed among white compared with non-white men in this study appear to be broadly consistent with known racial/ethnic differences in outcomes.</p

    Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal–organic frameworks

    Get PDF
    The synthesis of zirconium and hafnium metal–organic frameworks (MOFs) often relies on coordination modulation – the addition of competing monotopic modulators to reaction mixtures – to reproducibly generate highly crystalline material. Typically, large excesses of monocarboxylic acids such as formic, acetic and benzoic acid are applied, but access to diffraction quality single crystals, particularly of UiO-66 topology MOFs, remains troublesome. Herein, we show that amino acids, in particular L-proline, are highly efficient modulators of Zr and Hf MOFs of the UiO-66 series, with as little as four equivalents affording access to large, diffraction quality single crystals that are free of defects. Five crystal structures are reported, including MOFs which previously could not be characterised in this manner, with molecular dynamics simulations utilised to understand dynamic disorder. Additionally, a series of MOFs are characterised in depth, allowing a comparison of the thermal stabilities and porosities for Zr and Hf analogues. We also show that the protocol can be extended to microwave synthesis, and that modulating ability varies dramatically across a series of amino acids. Access to single crystals has facilitated our own in depth study of the mechanical properties of these MOFs, and we expect that our protocols will enable the discovery of new Zr and Hf MOFs as well as offer new insights into their materials properties

    Knee complaints vary with age and gender in the adult population. Population-based reference data for the Knee injury and Osteoarthritis Outcome Score (KOOS)

    Get PDF
    BACKGROUND: Self-reported knee complaints may vary with age and gender. Reference data from the adult population would help to better interpret the outcome of interventions due to knee complaints. The objectives of the present study were to describe the variation of self-reported knee pain, function and quality of life with age and gender in the adult population and to establish population-based reference data for the Knee injury and Osteoarthritis Outcome Score (KOOS). METHODS: Population-based cohort retrieved from the national population register. The knee-specific Knee injury and Osteoarthritis Outcome Score (KOOS) was mailed to 840 subjects aged 18–84 yrs. RESULTS: 68% response rate. Women in the age group 55–74 reported more knee-related complaints in all the KOOS subscales than age-matched men. The differences were significant for the subscales Pain (p = 0.027), Symptoms (p = 0.003) and ADL function (p = 0.046). In men, worse ADL and Sport and Recreation function was seen in the oldest age group 75–84 years compared to the younger age groups (p < 0.030). In women, worse Pain (p < 0.007), ADL (p < 0.030), Sport and Recreation (p < 0.001) and QOL (p < 0.002) were seen already in the age group 55–74 compared to the younger age groups. CONCLUSION: We found pain and other symptoms, physical function, and knee-related quality of life to vary with age and gender implying the use of age- and gender matched reference values for improved understanding of the outcome after interventions due to knee injury and knee OA

    Hypoxia and Prostaglandin E Receptor 4 Signalling Pathways Synergise to Promote Endometrial Adenocarcinoma Cell Proliferation and Tumour Growth

    Get PDF
    The prostaglandin endoperoxide synthase (PTGS) pathway is a potent driver of tumour development in humans by enhancing the biosynthesis and signalling of prostaglandin (PG) E2. PTGS2 expression and PGE2 biosynthesis is elevated in endometrial adenocarcinoma, however the mechanism whereby PTGS and PGE2 regulate endometrial tumour growth is unknown. Here we investigated (a) the expression profile of the PGE synthase enzymes (PTGES, PTGES-2, PTGES-3) and PGE receptors (PTGER1–4) in endometrial adenocarcinomas compared with normal endometrium and (b) the role of PTGER4 in endometrial tumorigenesis in vivo. We found elevated expression of PTGES2 and PTGER4 and suppression of PTGER1 and PTGER3 in endometrial adenocarcinomas compared with normal endometrium. Using WT Ishikawa endometrial adenocarcinoma cells and Ishikawa cells stably transfected with the full length PTGER4 cDNA (PTGER4 cells) xenografted in the dorsal flanks of nude mice, we show that PTGER4 rapidly and significantly enhances tumour growth rate. Coincident with enhanced PTGER4-mediated tumour growth we found elevated expression of PTGS2 in PTGER4 xenografts compared with WT xenografts. Furthermore we found that the augmented growth rate of the PTGER4 xenografts was not due to enhanced angiogenesis, but regulated by an increased proliferation index and hypoxia. In vitro, we found that PGE2 and hypoxia independently induce expression of PTGER4 indicating two independent pathways regulating prostanoid receptor expression. Finally we have shown that PGE2 and hypoxia synergise to promote cellular proliferation of endometrial adenocarcinoma cells

    Coordination Polymer Flexibility Leads to Polymorphism and Enables a Crystalline Solid-Vapour Reaction: A Multi-technique Mechanistic Study.

    Get PDF
    Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)2 ] formed by loss of TMP ligands exclusively from singly-bridging sites. Four polymorphic forms of 1 (1-A(LT) , 1-A(HT) , 1-B(LT) and 1-B(HT) ; HT=high temperature, LT=low temperature) have been identified crystallographically. In situ powder X-ray diffraction (PXRD) studies of the 1-ROH→1→2 transformations indicate the role of the HT polymorphs in these reactions. The structural relationship between polymorphs, involving changes in conformation of perfluoroalkyl chains and a change in orientation of entire polymers (A versus B forms), suggests a mechanism for the observed reactions and a pathway for guest transport within the fluorous layers. Consistent with this pathway, optical microscopy and AFM studies on single crystals of 1-MeOH/1-A(HT) show that cracks parallel to the layers of interdigitated perfluoroalkyl chains develop during the MeOH release/uptake process
    corecore