134 research outputs found

    Polymeric Frameworks as Organic Semiconductors with Controlled Electronic Properties

    Full text link
    The rational assembly of monomers, in principle, enables the design of a specific periodicity of polymeric frameworks, leading to a tailored set of electronic structure properties in these solid-state materials. The further development of these emerging systems requires a combination of both experimental and theoretical studies. Here, we investigated the electronic structures of two-dimensional polymeric frameworks based on triazine and benzene rings, by means of electrochemical techniques. The experimental density of states was obtained from quasi-open-circuit voltage measurements through galvanostatic intermittent titration technique, which we show to be in excellent agreement with first principles calculations performed for two and three-dimensional structures of these polymeric frameworks. These findings suggest that the electronic properties do not only depend on the number of stacked layers but also on the ratio of the different aromatic rings

    Smart Skin Patterns Protect Springtails

    Get PDF
    Springtails, arthropods who live in soil, in decaying material, and on plants, have adapted to demanding conditions by evolving extremely effective and robust anti-adhesive skin patterns. However, details of these unique properties and their structural basis are still unknown. Here we demonstrate that collembolan skin can resist wetting by many organic liquids and at elevated pressures. We show that the combination of bristles and a comb-like hexagonal or rhombic mesh of interconnected nanoscopic granules distinguish the skin of springtails from anti-adhesive plant surfaces. Furthermore, the negative overhang in the profile of the ridges and granules were revealed to be a highly effective, but as yet neglected, design principle of collembolan skin. We suggest an explanation for the non-wetting characteristics of surfaces consisting of such profiles irrespective of the chemical composition. Many valuable opportunities arise from the translation of the described comb-like patterns and overhanging profiles of collembolan skin into man-made surfaces that combine stability against wear and friction with superior non-wetting and anti-adhesive characteristics

    Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal–organic frameworks

    Get PDF
    The synthesis of zirconium and hafnium metal–organic frameworks (MOFs) often relies on coordination modulation – the addition of competing monotopic modulators to reaction mixtures – to reproducibly generate highly crystalline material. Typically, large excesses of monocarboxylic acids such as formic, acetic and benzoic acid are applied, but access to diffraction quality single crystals, particularly of UiO-66 topology MOFs, remains troublesome. Herein, we show that amino acids, in particular L-proline, are highly efficient modulators of Zr and Hf MOFs of the UiO-66 series, with as little as four equivalents affording access to large, diffraction quality single crystals that are free of defects. Five crystal structures are reported, including MOFs which previously could not be characterised in this manner, with molecular dynamics simulations utilised to understand dynamic disorder. Additionally, a series of MOFs are characterised in depth, allowing a comparison of the thermal stabilities and porosities for Zr and Hf analogues. We also show that the protocol can be extended to microwave synthesis, and that modulating ability varies dramatically across a series of amino acids. Access to single crystals has facilitated our own in depth study of the mechanical properties of these MOFs, and we expect that our protocols will enable the discovery of new Zr and Hf MOFs as well as offer new insights into their materials properties

    Mixed-linker UiO-66: structure–property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations

    Get PDF
    The use of mixed-linker metal–organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical–chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino- and bromo-functionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical–chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal–linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis

    Guest Molecule-Responsive Functional Calcium Phosphonate Frameworks for Tuned Proton Conductivity

    Get PDF
    We report the synthesis, structural characterization, and functionality of an open-framework hybrid that combines Ca2+ ions and the rigid polyfunctional ligand 5-(dihydroxyphosphoryl) isophthalic acid (PiPhtA). Ca-PiPhtA-I is obtained by slow crystallization at ambient conditions from acidic (pH≈3) aqueous solutions. It possesses a high water content (both Ca coordinated and in the lattice), and importantly, it exhibits water-filled 1D channels. At 75 °C, Ca-PiPhtA-I is partially dehydrated and exhibits a crystalline diffraction pattern that can be indexed in a monoclinic cell with parameters close to the pristine phase. Rietveld refinement was carried out for the sample heated at 75 °C, Ca-PiPhtA-II, using synchrotron powder X-ray diffraction data.All connectivity modes of the “parent” Ca-PiPhtA-I framework are retained in Ca-PiPhtA-II. Upon Ca-PiPhtA-I exposure to ammonia vapors (28% aqueous NH3) a new derivative is obtained (Ca-PiPhtA-NH3) containing 7 NH3 and 16 H2O molecules according to elemental and thermal analyses. Ca-PiPhtA-NH3 exhibits a complex X-ray diffraction pattern with peaks at 15.3 and 13.0 Å that suggest partial breaking and transformation of the parent pillared structure. Although detailed structural identification of Ca-PiPhtA-NH3 was not possible, due in part to nonequilibrium adsorption conditions and the lack of crystallinity, FT-IR spectra and DTA-TG analysis indicate profound structural changes compared to the pristine Ca-PiPhtA-I. At 98% RH and T = 24 °C, proton conductivity, σ, for Ca PiPhtA-I is 5.7 ×10−4 S·cm−1. It increases to 1.3 × 10−3 S·cm−1 upon activation by preheating the sample at 40 °C for 2 h followed by water equilibration at room temperature under controlled conditions. Ca-PiPhtA-NH3 exhibits the highest proton conductivity, 6.6 × 10−3 S·cm−1, measured at 98% RH and T = 24 °C. Ea for proton transfer in the above-mentioned frameworks range between 0.23 and 0.4 eV, typical of a Grothuss mechanism of proton conduction.Proyecto nacional MAT2010-1517

    Biologically derived metal organic frameworks

    Full text link

    Synthese metallorganischer GerĂŒstverbindungen und poröser Polymere fĂŒr den Einsatz in der Katalyse, Sensorik und Stofftrennung

    No full text
    Poröse Materialien zeichnen sich durch hohe spezifische OberflĂ€chen bzw. hohe spezifische Porenvolumina aus. Dies macht sie zu geeigneten Kandidaten fĂŒr die Gasspeicherung, Stofftrennung und die heterogene Katalyse, die Hauptanwendungsgebiete poröser Materialien. Um poröse Materialien hinsichtlich der eben genannten Anwendungsfelder zu optimieren ist es von entscheidender Bedeutung, sie hinsichtlich ihrer jeweiligen Anwendung maßzuschneidern. Eine Klasse hochporöser Materialien, bei der das Maßschneidern der Poren möglich ist, ist die der metallorganischen GerĂŒstverbindungen [engl. Metal-Organic Frameworks (MOFs)]. MOFs zeichnen sich durch einen modularen Aufbau aus, der ein systematisches Design der Poren erlaubt. Auch poröse Polymere können durch Funktionalisierung der entsprechenden Monomere hinsichtlich verschiedener Anwendungsgebiete gezielt synthetisiert werden. Ein Ziel dieser Arbeit war die Integration des Metalls Rhodium als knotenbildendes Element in ein MOF. Dazu wurde Rhodium(II)-acetat, welches bereits das Schaufelradmotiv enthĂ€lt, mit den trifunktionellen CarbonsĂ€uren TrimesinsĂ€ure und 4,4ÂŽ,4ÂŽÂŽ Benzen-1,3,5-triyl-tribenzoesĂ€ure zu den MOFs DUT 82 und DUT 83 umgesetzt. Das Schaufelradmotiv als sekundĂ€re Baueinheit in DUT-82 konnte durch röntgenabsorptionspektroskopische Untersuchungen nachgewiesen werden. Nach ĂŒberkritischem Trocknen gefolgt von thermischer Aktivierung zeigten DUT-82 und DUT-83 eine permanente PorositĂ€t mit spezifischen BET-OberflĂ€chen von bis zu 1150 m2g-1. Weiterhin konnte fĂŒr DUT-82 eine sehr hohe AffinitĂ€t zu Kohlenmonoxid, die selten fĂŒr MOFs beobachtet wird, nachgewiesen werden. Berechnungen der Adsorptionsenthalpie ergaben bei niedrigen Beladungen einen Wert von ungefĂ€hr 50 kJmol-1, was fĂŒr eine Chemisorption von Kohlenmonoxid an DUT-82 bei niedrigen DrĂŒcken spricht. Weiterhin zeigten katalytische Untersuchungen, dass sich DUT-82 als heterogener Hydrierkatalysator eignet. In einer Modellreaktion konnte Styrol erfolgreich zu Ethylbenzen umgesetzt werden. In einem weiteren Teil der Arbeit sollte ein MOF synthetisiert werden, das StabilitĂ€t und eine hohe KapazitĂ€t fĂŒr Schwefelwasserstoff miteinander vereint. Eine Klasse bereits bekannter MOFs mit hoher StabilitĂ€t basiert auf dem [Zr6O4(OH)4]12+-Cluster. Durch Kombination des [Zr6O4(OH)4]12+-Clusters mit Bipyridindicarboxylat konnte das MOF UiO-67(bipy) hergestellt werden, welches isostrukturell zu UiO 67 ist. Untersuchungen an UiO 67(bipy) zeigten, dass das unbeladene Netzwerk keinen Schwefelwasserstoff adsorbiert. Die BipyridinfunktionalitĂ€t wurde anschließend fĂŒr die permanente Integration weiterer Metallzentren (Metall = Cu, Ni, Co) genutzt. Dazu wurde UiO-67(bipy) zu wĂ€ssrigen oder ethanolischen Metallsalzlösungen gegeben und es kam zur Adsorption der Metallsalze aus der FlĂŒssigphase. Durch die postsynthetische Integration der Metallsalze konnte die AdsorptionskapazitĂ€t der resultierenden Metallsalz@UiO-67(bipy)-Materialien fĂŒr Schwefelwasserstoff bis auf 8 Gew.% gesteigert werden. Neben Adsorption und Katalyse ist die Sensorik ein weiteres Anwendungsfeld von MOFs. Eine organische Einheit, die sich als sensitive Komponente fĂŒr eine Integration in ein MOF anbietet, ist Dihydro-1,2,4,5-tetrazin, das zu 1,2,4,5-Tetrazin oxidiert werden kann. Das bemerkenswerte Merkmal dieser Reaktion ist der radikale Farbwechsel von Gelb nach Pink. Nach erfolgreicher Synthese der Dihydro-1,2,4,5-tetrazindicarbonsĂ€ure sollte sie durch Kombination mit dem [Zr6O4(OH)4]12+-Cluster zu einem UiO-66 analogen Netzwerk in ein stabiles Netzwerk integriert werden. Da die direkte Syntheseroute eines UiO-66 analogen Netzwerks nicht zum Erfolg fĂŒhrte, wurde die mildere Variante des Linkeraustauschs gewĂ€hlt. Über diese Route konnte das Dihydro-1,2,4,5-tetrazindicarboxylat erfolgreich partiell in das UiO-66 Netzwerk integriert werden. Anschließende Untersuchungen zeigten, dass die in das Netzwerk eingebaute Dihydro-1,2,4,5-tetrazin-Einheit sowohl in der FlĂŒssig- als auch in der Gasphase erfolgreich oxidiert werden kann, was durch UV/vis-Messungen belegt werden konnte. Eine weitere Klasse poröser Materialien, die hervorragende chemische StabilitĂ€t aufweist, ist die der konjugierten Triazin-Netzwerke. Sie entstehen durch Cyclotrimerisierung multifunktioneller Nitrile. Durch geschickte Wahl der Monomere ist eine Funktionalisierung der Triazin-Netzwerke möglich. Um ein chirales Triazin-Netzwerk zu synthetisieren, wurde Spirobiindan erfolgreich mit Nitrilgruppen funktionalisiert. Die Umsetzung des Monomers in einer Zinkchlorid-Schmelze fĂŒhrte zu porösen Polymeren mit spezifischen BET-OberflĂ€chen von bis zu 1180 m2g 1. Dabei konnte die PorengrĂ¶ĂŸenverteilung des Triazin-Netzwerkes durch Variation des VerhĂ€ltnisses von Zinkchlorid zu Monomer gezielt eingestellt werden. Die Polymersynthese erfolgte mit einer racemischen Mischung des Monomers und fĂŒhrte somit zu einem achiralen Polymer. Erste Untersuchungen zeigten, dass eine Trennung des racemisch vorliegenden Monomers mittels HochleistungsflĂŒssigchromatographie möglich ist. Die Imidazoliumgruppe ist eine weitere Baueinheit, die in Triazin-Polymere integriert werden sollte, da sie leicht in ein N-Heterocyclisches Carben ĂŒberfĂŒhrt werden kann. N-Neterocyclische Carbene können direkt als Katalysator bzw. als Ligand fĂŒr eine Vielzahl von Metallen zur Generierung eines Katalysators genutzt werden. Über mehrstufige Synthesen konnten zwei nitrilfunktionalisierte Imidazoliumsalze hergestellt werden. Die anschließende Cyclotrimerisierung fĂŒhrte zu porösen Polymeren mit spezifischen BET-OberflĂ€chen von bis zu 680 m2g-1. Erste katalytische Untersuchungen zum Einsatz dieser Triazin-Netzwerke in Umpolungsreaktionen von Zimtaldehyd mit 2,2,2 Trifluoracetophenon zeigten jedoch lediglich einen geringen Umsatz zum gewĂŒnschten Produkt
    • 

    corecore