488 research outputs found

    Self-management of recurrent headache

    Get PDF
    Na primeira parte desta revisão sobre terapêutica não-farmacológica das cefaléias, são discutidos os príncipios e a eficácia das principais formas de intervenção psicológica para enxaqueca recorrente e cefaléia tensional (técnicas de relaxamento ou de “biofeedback”e controle do estresse). Na segunda parte, são apresentados programas detalhados de treinamento de relaxamento ou de biofeedback pelo aquecimento das mãos. Finalmente, são discutidas brevemente os critérios para alterar ou terminar o tratamento.In this first part of this review of nonpharmacological therapies for headache, principles and efficacy of main categories of psychological interventions for recurrent migraine and tension-type headache (relaxation training, biofeedback training and stress management) are discussed. In the second part, detailed programs of relaxation training and handwarming biofeedback training are presented. Finally, criteria for altering or terminating treatment are briefly discussed

    Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds

    Full text link
    [EN] In this work it is shown that iron(III) and gold(I) triflimide efficiently catalyze the hydroaddition of a wide array of nucleophiles including water, alcohols, thiols, amines, alkynes, and alkenes to multiple CC bonds. The study of the catalytic activity and selectivity of iron(III), gold(I), and BrOnsted triflimides has unveiled that iron(III) triflimide [Fe(NTf2)3] is a robust catalyst under heating conditions, whereas gold(I) triflimide, even stabilized by PPh3, readily decomposes at 80 degrees C and releases triflimidic acid (HNTf2) that can catalyze the corresponding reaction, as shown by in situ 19F, 15N, and 31PNMR spectroscopy. The results presented here demonstrate that each of the two catalyst types has weaknesses and strengths and complement each other. Iron(III) triflimide can act as a substitute of gold(I) triflimide as a catalyst for hydroaddition reactions to unsaturated carbon-carbon bonds.The work has been supported by Consolider-Ingenio 2010 (proyecto MULTICAT). J.R.C.A. thanks MCIINN for the concession of a pre-doctoral FPU fellowship. A. L. P. thanks ITQ for financial support.Cabrero Antonino, JR.; Leyva Perez, A.; Corma Canós, A. (2013). Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds. Chemistry - A European Journal. 19(26):8627-8633. https://doi.org/10.1002/chem.201300386S862786331926Brenzovich, W. E. (2012). Gold in der Totalsynthese: Alkine als Carbonylersatz. Angewandte Chemie, 124(36), 9063-9065. doi:10.1002/ange.201204598Brenzovich, W. E. (2012). Gold in Total Synthesis: Alkynes as Carbonyl Surrogates. Angewandte Chemie International Edition, 51(36), 8933-8935. doi:10.1002/anie.201204598Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414uKrause, N., & Winter, C. (2011). Gold-Catalyzed Nucleophilic Cyclization of Functionalized Allenes: A Powerful Access to Carbo- and Heterocycles. Chemical Reviews, 111(3), 1994-2009. doi:10.1021/cr1004088Huang, H., Zhou, Y., & Liu, H. (2011). Recent advances in the gold-catalyzed additions to C–C multiple bonds. Beilstein Journal of Organic Chemistry, 7, 897-936. doi:10.3762/bjoc.7.103Hashmi, A. S. K. (2010). Homogene Gold-Katalyse jenseits von Vermutungen und Annahmen - charakterisierte Intermediate. Angewandte Chemie, 122(31), 5360-5369. doi:10.1002/ange.200907078Hashmi, A. S. K. (2010). Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angewandte Chemie International Edition, 49(31), 5232-5241. doi:10.1002/anie.200907078Beaumont, S. K., Kyriakou, G., & Lambert, R. M. (2010). Identity of the Active Site in Gold Nanoparticle-Catalyzed Sonogashira Coupling of Phenylacetylene and Iodobenzene. Journal of the American Chemical Society, 132(35), 12246-12248. doi:10.1021/ja1063179Marion, N., Ramón, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403eGrirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314nGonzález-Arellano, C., Abad, A., Corma, A., García, H., Iglesias, M., & Sánchez, F. (2007). Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie, 119(9), 1558-1560. doi:10.1002/ange.200604746González-Arellano, C., Abad, A., Corma, A., García, H., Iglesias, M., & Sánchez, F. (2007). Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie International Edition, 46(9), 1536-1538. doi:10.1002/anie.200604746Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436xWienhöfer, G., Westerhaus, F. A., Jagadeesh, R. V., Junge, K., Junge, H., & Beller, M. (2012). Selective iron-catalyzed transfer hydrogenation of terminal alkynes. Chemical Communications, 48(40), 4827. doi:10.1039/c2cc31091kCabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Regioselective Hydration of Alkynes by Iron(III) Lewis/Brønsted Catalysis. Chemistry - A European Journal, 18(35), 11107-11114. doi:10.1002/chem.201200580Boddien, A., Mellmann, D., Gartner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2011). Direct C−H Transformation via Iron Catalysis. Chemical Reviews, 111(3), 1293-1314. doi:10.1021/cr100198wJunge, K., Schröder, K., & Beller, M. (2011). Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chemical Communications, 47(17), 4849. doi:10.1039/c0cc05733aZhou, S., Fleischer, S., Junge, K., Das, S., Addis, D., & Beller, M. (2010). Asymmetrische Synthese von Aminen: eine allgemeine und effiziente eisenkatalysierte enantioselektive Transferhydrierung von Iminen. Angewandte Chemie, 122(44), 8298-8302. doi:10.1002/ange.201002456Zhou, S., Fleischer, S., Junge, K., Das, S., Addis, D., & Beller, M. (2010). Enantioselective Synthesis of Amines: General, Efficient Iron-Catalyzed Asymmetric Transfer Hydrogenation of Imines. Angewandte Chemie International Edition, 49(44), 8121-8125. doi:10.1002/anie.201002456Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096Zhou, S., Junge, K., Addis, D., Das, S., & Beller, M. (2009). A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angewandte Chemie, 121(50), 9671-9674. doi:10.1002/ange.200904677Zhou, S., Junge, K., Addis, D., Das, S., & Beller, M. (2009). A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angewandte Chemie International Edition, 48(50), 9507-9510. doi:10.1002/anie.200904677Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp C−H Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593Correa, A., García Mancheño, O., & Bolm, C. (2008). Iron-catalysed carbon–heteroatom and heteroatom–heteroatom bond forming processes. Chemical Society Reviews, 37(6), 1108. doi:10.1039/b801794hMichaux, J., Terrasson, V., Marque, S., Wehbe, J., Prim, D., & Campagne, J.-M. (2007). Intermolecular FeCl3-Catalyzed Hydroamination of Styrenes. European Journal of Organic Chemistry, 2007(16), 2601-2603. doi:10.1002/ejoc.200700023Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 104(12), 6217-6254. doi:10.1021/cr040664hFürstner, A., Leitner, A., Méndez, M., & Krause, H. (2002). Iron-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 124(46), 13856-13863. doi:10.1021/ja027190tKischel, J., Jovel, I., Mertins, K., Zapf, A., & Beller, M. (2006). A Convenient FeCl3-Catalyzed Hydroarylation of Styrenes. Organic Letters, 8(1), 19-22. doi:10.1021/ol0523143Patil, N. T., Kavthe, R. D., & Shinde, V. S. (2012). Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated C–C multiple bonds. Tetrahedron, 68(39), 8079-8146. doi:10.1016/j.tet.2012.05.125Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616Hashmi, A. S. K. (2007). Homogeneous gold catalysis: The role of protons. Catalysis Today, 122(3-4), 211-214. doi:10.1016/j.cattod.2006.10.006Hashmi, A. S. K., Schwarz, L., Rubenbauer, P., & Blanco, M. C. (2006). The Condensation of Carbonyl Compounds with Electron-Rich Arenes: Mercury, Thallium, Gold or a Proton? Advanced Synthesis & Catalysis, 348(6), 705-708. doi:10.1002/adsc.200505464Williamson, K. S., & Yoon, T. P. (2012). Iron Catalyzed Asymmetric Oxyamination of Olefins. Journal of the American Chemical Society, 134(30), 12370-12373. doi:10.1021/ja3046684Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metalltriflimidate sind bessere Katalysatoren für die organische Synthese als Metalltriflate - der Effekt eines stark delokalisierten Gegenions. Angewandte Chemie, 122(43), 8032-8060. doi:10.1002/ange.200906407Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407Ricard, L., & Gagosz, F. (2007). Synthesis and Reactivity of Air-Stable N-Heterocyclic Carbene Gold(I) Bis(trifluoromethanesulfonyl)imidate Complexes. Organometallics, 26(19), 4704-4707. doi:10.1021/om7006002Dang, T. T., Boeck, F., & Hintermann, L. (2011). Hidden Brønsted Acid Catalysis: Pathways of Accidental or Deliberate Generation of Triflic Acid from Metal Triflates. The Journal of Organic Chemistry, 76(22), 9353-9361. doi:10.1021/jo201631xTaylor, J. G., Adrio, L. A., & Hii, K. K. (Mimi). (2010). Hydroamination reactions by metal triflates: Brønsted acid vs. metal catalysis? Dalton Trans., 39(5), 1171-1175. doi:10.1039/b918970jKovács, G., Lledós, A., & Ujaque, G. (2010). Mechanistic Comparison of Acid- and Gold(I)-Catalyzed Nucleophilic Addition Reactions to Olefins. Organometallics, 29(22), 5919-5926. doi:10.1021/om1007192Li, Z., Zhang, J., Brouwer, C., Yang, C.-G., Reich, N. W., & He, C. (2006). Brønsted Acid Catalyzed Addition of Phenols, Carboxylic Acids, and Tosylamides to Simple Olefins. Organic Letters, 8(19), 4175-4178. doi:10.1021/ol0610035(s. f.). doi:10.1021/ol061174Wabnitz, T. C., Yu, J.-Q., & Spencer, J. B. (2004). Evidence That Protons Can Be the Active Catalysts in Lewis Acid Mediated Hetero-Michael Addition Reactions. Chemistry - A European Journal, 10(2), 484-493. doi:10.1002/chem.200305407Penzien, J., Su, R. Q., & Müller, T. E. (2002). The role of protons in hydroamination reactions involving homogeneous and heterogeneous catalysts. Journal of Molecular Catalysis A: Chemical, 182-183, 489-498. doi:10.1016/s1381-1169(01)00496-4Weïwer, M., Coulombel, L., & Duñach, E. (2006). Regioselective indium(iii) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem. Commun., (3), 332-334. doi:10.1039/b513946eLeyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558eLeyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491Arvai, R., Toulgoat, F., Langlois, B. R., Sanchez, J.-Y., & Médebielle, M. (2009). A simple access to metallic or onium bistrifluoromethanesulfonimide salts. Tetrahedron, 65(27), 5361-5368. doi:10.1016/j.tet.2009.04.068Hashmi, A. S. K., Blanco, M. C., Fischer, D., & Bats, J. W. (2006). Gold Catalysis: Evidence for the In-situ Reduction of Gold(III) During the Cyclization of Allenyl Carbinols. European Journal of Organic Chemistry, 2006(6), 1387-1389. doi:10.1002/ejoc.200600009Morita, N., & Krause, N. (2006). Erste goldkatalysierte C-S-Bindungsknüpfung: Cycloisomerisierung von α-Thioallenen zu 2,5-Dihydrothiophenen. Angewandte Chemie, 118(12), 1930-1933. doi:10.1002/ange.200503846Morita, N., & Krause, N. (2006). The First Gold-Catalyzed CS Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angewandte Chemie International Edition, 45(12), 1897-1899. doi:10.1002/anie.200503846Santos, L. L., Ruiz, V. R., Sabater, M. J., & Corma, A. (2008). Regioselective transformation of alkynes into cyclic acetals and thioacetals with a gold(I) catalyst: comparison with Brønsted acid catalysts. Tetrahedron, 64(34), 7902-7909. doi:10.1016/j.tet.2008.06.032Hashimoto, T., Kutubi, S., Izumi, T., Rahman, A., & Kitamura, T. (2011). Catalytic hydroarylation of alkynes with arenes in the presence of FeCl3 and AgOTf. Journal of Organometallic Chemistry, 696(1), 99-105. doi:10.1016/j.jorganchem.2010.08.009Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094Hashmi, A. S. K., & Rudolph, M. (2008). Gold catalysis in total synthesis. Chemical Society Reviews, 37(9), 1766. doi:10.1039/b615629kLeyva-Pérez, A., & Corma, A. (2011). Ähnlichkeiten und Unterschiede innerhalb der «relativistischen» Triade Gold, Platin und Quecksilber in der Katalyse. Angewandte Chemie, 124(3), 636-658. doi:10.1002/ange.201101726Leyva-Pérez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.20110172

    Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives

    Full text link
    The catalytic behavior of metal-organic frameworks of different structures (Fe(BTC), MIL-100(Fe), MIL-100(Cr) and Cu-3(BTC)(2)) was investigated in annulation reaction between 2-methyl-3-buten-2-ol and phenols differing in size (phenol, 2-naphthol). MIL-100(Fe) possessing intermediate Lewis acidity, perfect crystalline structure, and the highest S-BET surface area showed the highest activity (TOF = 0.7 and 1.4h(-1) for phenol and 2-naphthol, respectively) and selectivities to target benzopyran (45% and 65% at 16% of phenol and 2-naphthol conversion, respectively). The increasing strength of Lewis acid centers for MIL-100(Cr) was found to result in the dramatically decreased activity of the catalyst, while negligible conversion of phenols was found over Fe(BTC), characterized by a less ordered framework.M.O. and J.C. acknowledge the Czech Science Foundation for the support (14-07101S) and RNDr. Libor Brabec, CSc. for SEM images.Shamzhy, MV.; Opanasenko, MV.; García Gómez, H.; Cejka, J. (2015). Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives. Microporous and Mesoporous Materials. 202:297-302. doi:10.1016/j.micromeso.2014.10.003S29730220

    Effectiveness of manual therapy compared to usual care by the general practitioner for chronic tension-type headache: design of a randomised clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with Chronic Tension Type Headache (CTTH) report functional and emotional impairments (loss of workdays, sleep disturbances, emotional well-being) and are at risk for overuse of medication. Manual therapy may improve symptoms through mobilisation of the spine, correction of posture, and training of cervical muscles.</p> <p>We present the design of a randomised clinical trial (RCT) evaluating the effectiveness of manual therapy (MT) compared to usual care by the general practitioner (GP) in patients with CTTH.</p> <p>Methods and design</p> <p>Patients are eligible for participation if they present in general practice with CTTH according to the classification of the International Headache Society (IHS).</p> <p>Participants are randomised to either usual GP care according to the national Dutch general practice guidelines for headache, or manual therapy, consisting of mobilisations (high- and low velocity techniques), exercise therapy for the cervical and thoracic spine and postural correction. The primary outcome measures are the number of headache days and use of medication. Secondary outcome measures are severity of headache, functional status, sickness absence, use of other healthcare resources, active cervical range of motion, algometry, endurance of the neckflexor muscles and head posture. Follow-up assessments are conducted after 8 and 26 weeks.</p> <p>Discussion</p> <p>This is a pragmatic trial in which interventions are offered as they are carried out in everyday practice. This increases generalisability of results, but blinding of patients, GPs and therapists is not possible.</p> <p>The results of this trial will contribute to clinical decision making of the GP regarding referral to manual therapy in patients with chronic tension headache.</p

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
    corecore