1,401 research outputs found

    Effects of weak anchoring on C1 and C2 chevron structures

    Get PDF
    We present a theoretical study of the effect of weak anchoring on the transition between C1 and C2 chevron structures in smectic C liquid crystals. We employ a continuum theory which allows for variable cone, azimuthal and layer tilt angles. Equilibrium profiles for the director cone and azimuthal angles in the C1 and C2 states are calculated from the standard Euler-Lagrange minimisation of the total energy of the system. By comparing the total energies of the C1 and C2 states we can determine the globally stable chevron profile and calculate the critical temperature for the C1-C2 transition, which depends on anchoring strength and pretilt angle variations

    Novel Approaches to Detect Serum Biomarkers for Clinical Response to Interferon-β Treatment in Multiple Sclerosis

    Get PDF
    Interferon beta (IFNβ) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNβ. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1α, between clinical responders and non-responders, despite the association of these proteins with IFNβ treatment in MS

    Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    Get PDF
    Abstract Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic

    Flow-induced delayed Freedericksz transition

    Get PDF
    We demonstrate that a compact manometer experiment allows direct observation of a delay to the classical electric-field-induced Freedericksz transition produced by flow in a highly dispersive nematic liquid crystal layer. The Ericksen-Leslie equations are used to show that a flow aligning torque generated in the nematic layer under Poiseuille flow competes with the orthogonal electric-field reorientation torque. This model fully reproduces the experimental results using only self-consistently determined viscosity values, and predicts a more generally applicable expression for the dependence of the delay Ec∝√ζ/Δχe on the shear rate ζ and on the electric susceptibility anisotropy Δχe

    LOFAR Sparse Image Reconstruction

    Get PDF
    Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKAComment: Published in A&A, 19 pages, 9 figure

    Novel analytical method, Birth Date Selection Mapping, detects response of the Angus (Bos taurus) genome to selection on complex traits

    Get PDF
    Background: Several methods have recently been developed to identify regions of the genome that have been exposed to strong selection. However, recent theoretical and empirical work suggests that polygenic models are required to identify the genomic regions that are more moderately responding to ongoing selection on complex traits. We examine the effects of multi-trait selection on the genome of a population of US registered Angus beef cattle born over a 50-year period representing approximately 10 generations of selection. We present results from the application of a quantitative genetic model, called Birth Date Selection Mapping, to identify signatures of recent ongoing selection.Results: We show that US Angus cattle have been systematically selected to alter their mean additive genetic merit for most of the 16 production traits routinely recorded by breeders. Using Birth Date Selection Mapping, we estimate the time-dependency of allele frequency for 44,817 SNP loci using genomic best linear unbiased prediction, generalized least squares, and BayesCpi analyses. Finally, we reconstruct the primary phenotypes that have historically been exposed to selection from a genome-wide analysis of the 16 production traits and gene ontology enrichment analysis.Conclusions: We demonstrate that Birth Date Selection Mapping utilizing mixed models corrects for time-dependent pedigree sampling effects that lead to spurious SNP associations and reveals genomic signatures of ongoing selection on complex traits. Because multiple traits have historically been selected in concert and most quantitative trait loci have small effects, selection has incrementally altered allele frequencies throughout the genome. Two quantitative trait loci of large effect were not the most strongly selected of the loci due to their antagonistic pleiotropic effects on strongly selected phenotypes. Birth Date Selection Mapping may readily be extended to temporally-stratified human or model organism populations.Peer reviewedAnimal Scienc

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK

    Symptom Dimensions in OCD: Item-Level Factor Analysis and Heritability Estimates

    Get PDF
    To reduce the phenotypic heterogeneity of obsessive-compulsive disorder (OCD) for genetic, clinical and translational studies, numerous factor analyses of the Yale-Brown Obsessive Compulsive Scale checklist (YBOCS-CL) have been conducted. Results of these analyses have been inconsistent, likely as a consequence of small sample sizes and variable methodologies. Furthermore, data concerning the heritability of the factors are limited. Item and category-level factor analyses of YBOCS-CL items from 1224 OCD subjects were followed by heritability analyses in 52 OCD-affected multigenerational families. Item-level analyses indicated that a five factor model: (1) taboo, (2) contamination/cleaning, (3) doubts, (4) superstitions/rituals, and (5) symmetry/hoarding provided the best fit, followed by a one-factor solution. All 5 factors as well as the one-factor solution were found to be heritable. Bivariate analyses indicated that the taboo and doubts factor, and the contamination and symmetry/hoarding factor share genetic influences. Contamination and symmetry/hoarding show shared genetic variance with symptom severity. Nearly all factors showed shared environmental variance with each other and with symptom severity. These results support the utility of both OCD diagnosis and symptom dimensions in genetic research and clinical contexts. Both shared and unique genetic influences underlie susceptibility to OCD and its symptom dimensions.Obsessive Compulsive FoundationTourette Syndrome AssociationAnxiety Disorders Association of AmericaAmerican Academy of Child and Adolescent Psychiatr

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore