487 research outputs found

    Determination of the size, mass, and density of "exomoons" from photometric transit timing variations

    Full text link
    Precise photometric measurements of the upcoming space missions allow the size, mass, and density of satellites of exoplanets to be determined. Here we present such an analysis using the photometric transit timing variation (TTVpTTV_p). We examined the light curve effects of both the transiting planet and its satellite. We define the photometric central time of the transit that is equivalent to the transit of a fixed photocenter. This point orbits the barycenter, and leads to the photometric transit timing variations. The exact value of TTVpTTV_p depends on the ratio of the density, the mass, and the size of the satellite and the planet. Since two of those parameters are independent, a reliable estimation of the density ratio leads to an estimation of the size and the mass of the exomoon. Upper estimations of the parameters are possible in the case when an upper limit of TTVpTTV_p is known. In case the density ratio cannot be estimated reliably, we propose an approximation with assuming equal densities. The presented photocenter TTVpTTV_p analysis predicts the size of the satellite better than the mass. We simulated transits of the Earth-Moon system in front of the Sun. The estimated size and mass of the Moon are 0.020 Earth-mass and 0.274 Earth-size if equal densities are assumed. This result is comparable to the real values within a factor of 2. If we include the real density ratio (about 0.6), the results are 0.010 Earth-Mass and 0.253 Earth-size, which agree with the real values within 20%.Comment: 6 pages, 5 figures, to appear in Astronomy and Astrophysic

    Principal Investigator Views of the IRB System

    Get PDF
    We undertook a qualitative e-mail survey of federally-funded principal investigators of their views of the US human subjects protection system, intended to identify the range of investigator attitudes. This was an exploratory study with a 14% response rate. Twenty-eight principal investigators responded; their comments were analyzed to show underlying themes, which are here presented along with supporting quotations

    Presence of 5-hydroxyguaiacyl units as native lignin constituents in plants as seen by Py-GC/MS

    Get PDF
    Instituto de Recursos Naturales y AgrobiologĂ­a de Sevilla, CSIC, P.O. Box 1052, 41080-Seville, Spain 2Centro de Investigaciones BiolĂłgicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain E-mail address: [email protected] (J.C. del RĂ­o)The presence of 5-hydroxyguaiacyl moieties in the lignin from several plants has been assessed by Py-GC/MS. Different woody (eucalypt) and nonwoody (flax, hemp, kenaf, jute, sisal and abaca) angiosperms were selected for this study. The pyrolysis of whole fibers released lignin-derived products with p-hydroxyphenyl, guaiacyl and syringyl structures. Indeed, a series of compounds having a 5-hydroxyguaiacyl nuclei, including 3-methoxycatechol, 5-vinyl-3-methoxycatechol and 5-propenyl-3-methoxycatechol, were detected and identified in all samples, although in lower amounts than the normal guaiacyl and syringyl compounds. The analysis of the lignins isolated from the same plants also indicated the presence of 5-hydroxyguaiacyl moieties in the isolated lignins. These compounds are supposed to arise from the pyrolysis of 5-hydroxyguaiacyl moieties, which are supposed to be native constituents of lignin in plants forming benzodioxane substructures.This study has been supported by the Spanish Ministerio de Ciencia y TecnologĂ­a (MCyT) and FEDER funds (project AGL2005-01748) and the EU project BIORENEW (NMP2-CT-2006-026456). We thank CELESA S.A. (Tortosa, Spain) for providing the nonwoody plant samples, and ENCE for providing the eucalypt wood sample.Peer reviewe

    The Hubble Space Telescope Treasury Program on the Orion Nebula Cluster

    Full text link
    The Hubble Space Telescope (HST) Treasury Program on the Orion Nebula Cluster has used 104 orbits of HST time to image the Great Orion Nebula region with the Advanced Camera for Surveys (ACS), the Wide-Field/Planetary Camera 2 (WFPC2) and the Near Infrared Camera and Multi Object Spectrograph (NICMOS) instruments in 11 filters ranging from the U-band to the H-band equivalent of HST. The program has been intended to perform the definitive study of the stellar component of the ONC at visible wavelengths, addressing key questions like the cluster IMF, age spread, mass accretion, binarity and cirumstellar disk evolution. The scanning pattern allowed to cover a contiguous field of approximately 600 square arcminutes with both ACS and WFPC2, with a typical exposure time of approximately 11 minutes per ACS filter, corresponding to a point source depth AB(F435W) = 25.8 and AB(F775W)=25.2 with 0.2 magnitudes of photometric error. We describe the observations, data reduction and data products, including images, source catalogs and tools for quick look preview. In particular, we provide ACS photometry for 3399 stars, most of them detected at multiple epochs, WFPC2 photometry for 1643 stars, 1021 of them detected in the U-band, and NICMOS JH photometry for 2116 stars. We summarize the early science results that have been presented in a number of papers. The final set of images and the photometric catalogs are publicly available through the archive as High Level Science Products at the STScI Multimission Archive hosted by the Space Telescope Science Institute.Comment: Accepted for publication on the Astrophysical Journal Supplement Series, March 27, 201

    An air-stable DPP-thieno-TTF copolymer for single-material solar cell devices and field effect transistors

    Get PDF
    Following an approach developed in our group to incorporate tetrathiafulvalene (TTF) units into conjugated polymeric systems, we have studied a low band gap polymer incorporating TTF as a donor component. This polymer is based on a fused thieno-TTF unit that enables the direct incorporation of the TTF unit into the polymer, and a second comonomer based on the diketopyrrolopyrrole (DPP) molecule. These units represent a donor–acceptor copolymer system, p(DPP-TTF), showing strong absorption in the UV–visible region of the spectrum. An optimized p(DPP-TTF) polymer organic field effect transistor and a single material organic solar cell device showed excellent performance with a hole mobility of up to 5.3 × 10–2 cm2/(V s) and a power conversion efficiency (PCE) of 0.3%, respectively. Bulk heterojunction organic photovoltaic devices of p(DPP-TTF) blended with phenyl-C71-butyric acid methyl ester (PC71BM) exhibited a PCE of 1.8%

    Treatment of chronically depressed patients: A multisite randomized controlled trial testing the effectiveness of 'Cognitive Behavioral Analysis System of Psychotherapy' (CBASP) for chronic depressions versus usual secondary care

    Get PDF
    AbstractBackground'Cognitive Behavioral Analysis System of Psychotherapy' (CBASP) is a form of psychotherapy specifically developed for patients with chronic depression. In a study in the U.S., remarkable favorable effects of CBASP have been demonstrated. However, no other studies have as yet replicated these findings and CBASP has not been tested outside the United States. This protocol describes a randomized controlled trial on the effectiveness of CBASP in the Netherlands.Methods/DesignThe purpose of the present paper is to report the study protocol of a multisite randomized controlled trial testing the effectiveness of 'Cognitive Behavioral Analysis System of Psychotherapy' (CBASP) for chronic depression in the Netherlands. In this study, CBASP in combination with medication, will be tested versus usual secondary care in combination with medication. The aim is to recruit 160 patients from three mental health care organizations. Depressive symptoms will be assessed at baseline, after 8 weeks, 16 weeks, 32 weeks and 52 weeks, using the 28-item Inventory for Depressive Symptomatology (IDS). Effect modification by co morbid anxiety, alcohol consumption, general and social functioning and working alliance will be tested. GEE analyses of covariance, controlling for baseline value and center will be used to estimate the overall treatment effectiveness (difference in IDS score) at post-treatment and follow up. The primary analysis will be by 'intention to treat' using double sided tests. An economic analysis will compare the two groups in terms of mean costs and cost-effectiveness from a societal perspective.DiscussionThe study will provide an answer to the question whether the favorable effects of CBASP can be replicated outside the US

    Variation in renal responses to exercise in the heat with progressive acclimatisation

    Get PDF
    Objectives To investigate changes in renal status from exercise in the heat with acclimatisation and to evaluate surrogates markers of Acute Kidney Injury. Design Prospective observational cohort study. Methods 20 male volunteers performed 60 min standardised exercise in the heat, at baseline and on four subsequent occasions during a 23-day acclimatisation regimen. Blood was sampled before and after exercise for serum creatinine, copeptin, interleukin-6, normetanephrine and cortisol. Fractional excretion of sodium was calculated for corresponding urine samples. Ratings of Perceived Exertion were reported every 5 min during exercise. Acute Kidney Injury was defined as serum creatinine rise ≄26.5 Όmol L−1 or fall in estimated glomerular filtration rate >25%. Predictive values of each candidate marker for developing Acute Kidney Injury were determined by ROC analysis. Results From baseline to Day 23, serum creatinine did not vary at rest, but showed a significant (P < 0.05) reduction post-exercise (120 [102, 139] versus 102 [91, 112] ÎŒmol L−1). Acute Kidney Injury was common (26/100 exposures) and occurred most frequently in the unacclimatised state. Log-normalised fractional excretion of sodium showed a significant interaction (exercise by acclimatization day), with post-exercise values tending to rise with acclimatisation. Ratings of Perceived Exertion predicted AKI (AUC 0.76, 95% confidence interval 0.65–0.88), performing at least as well as biochemical markers. Conclusions Heat acclimatization is associated with reduced markers of renal stress and AKI incidence, perhaps due to improved regional perfusion. Acclimatisation and monitoring Ratings of Perceived Exertion are practical, non-invasive measures that could help to reduce renal injury from exercise in the heat

    Multiple goals: A review and derivation of general principles

    Get PDF
    A great deal of literature has examined the factors involved in single-goal pursuit. However, there is a burgeoning realization that employees hold multiple goals at any one point in time and that findings from the single-goal literature do not necessarily apply to multiple-goal situations. Research is now being conducted on multiple goals, but it is being conducted across a broad range of disciplines, examining different levels of the goal hierarchy. Consequently, researchers are using the same label to refer to distinct concepts (the “jangle” fallacy) or different labels to refer to similar concepts (the “jingle” fallacy), and some aspects of the multiple-goal space are yet to be examined. We derive seven general principles of the multiple-goal process from a broad review of the literature. In doing so, we provide a common architecture and an overarching perspective of the theory for ongoing research as well as highlighting a number of areas for future research

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore