486 research outputs found

    Tunneling broadening of vibrational sidebands in molecular transistors

    Full text link
    Transport through molecular quantum dots coupled to a single vibration mode is studied in the case with strong coupling to the leads. We use an expansion in the correlation between electrons on the molecule and electrons in the leads and show that the tunneling broadening is strongly suppressed by the combination of the Pauli principle and the quantization of the oscillator. As a consequence the first Frank-Condon step is sharper than the higher order ones, and its width, when compared to the bare tunneling strength, is reduced by the overlap between the groundstates of the displaced and the non-displaced oscillator.Comment: 8 pages, 3 figures. PRB, in pres

    Phonon effects in molecular transistors: Quantum and classical treatment

    Full text link
    We present a comprehensive theoretical treatment of the effect of electron-phonon interactions in molecular transistors, including both quantal and classical limits and we study both equilibrated and out of equilibrium phonons. We present detailed results for conductance, noise and phonon distribution in two regimes. One involves temperatures large as compared to the rate of electronic transitions on and off the dot; in this limit our approach yields classical rate equations, which are solved numerically for a wide range of parameters. The other regime is that of low temperatures and weak electron-phonon coupling where a perturbative approximation in the Keldysh formulation can be applied. The interplay between the phonon-induced renormalization of the density of states on the quantum dot and the phonon-induced renormalization of the dot-lead coupling is found to be important. Whether or not the phonons are able to equilibrate in a time rapid compared to the transit time of an electron through the dot is found to affect the conductance. Observable signatures of phonon equilibration are presented. We also discuss the nature of the low-T to high-T crossover.Comment: 20 pages, 19 figures. Minor changes, version accepted for publication in Phys. Rev.

    Impact of van der Waals forces on the classical shuttle instability

    Full text link
    The effects of including the van der Waals interaction in the modelling of the single electron shuttle have been investigated numerically. It is demonstrated that the relative strength of the vdW-forces and the elastic restoring forces determine the characteristics of the shuttle instability. In the case of weak elastic forces and low voltages the grain is trapped close to one lead, and this trapping can be overcome by Coulomb forces by applying a bias voltage VV larger than a threshold voltage VuV_{\rm u}. This allows for grain motion leading to an increase in current by several orders of magnitude above the transition voltage VuV_{\rm u}. Associated with the process is also hysteresis in the I-V characteristics.Comment: minor revisions, updated references, Article published in Phys. Rev. B 69, 035309 (2004

    A functional riboSNitch in the 3' untranslated region of FKBP5 alters MicroRNA-320a binding efficiency and mediates vulnerability to chronic post-traumatic pain

    Get PDF
    Previous studies have shown that common variants of the gene coding for FK506-binding protein 51 (FKBP5), a critical regulator of glucocorticoid sensitivity, affect vulnerability to stress-related disorders. In a previous report, FKBP5 rs1360780 was identified as a functional variant because of its effect on gene methylation. Here we report evidence for a novel functional FKBP5 allele, rs3800373. This study assessed the association between rs3800373 and post-traumatic chronic pain in 1607 women and men from two ethnically diverse human cohorts. The molecular mechanism through which rs3800373 affects adverse outcomes was established via in silico, in vivo, and in vitro analyses. The rs3800373 minor allele predicted worse adverse outcomes after trauma exposure, such that individuals with the minor (risk) allele developed more severe post-traumatic chronic musculoskeletal pain. Among these individuals, peritraumatic circulating FKBP5 expression levels increased as cortisol and glucocorticoid receptor (NR3C1) mRNA levels increased, consistent with increased glucocorticoid resistance. Bioinformatic, in vitro, and mutational analyses indicate that the rs3800373 minor allele reduces the binding of a stress-and pain-associated microRNA, miR-320a, to FKBP5 via altering the FKBP5 mRNA 3'UTR secondary structure (i.e., is a riboSNitch). This results in relatively greater FKBP5 translation, unchecked by miR-320a. Overall, these results identify an important gene–miRNA interaction influencing chronic pain risk in vulnerable individuals and suggest that exogenous methods to achieve targeted reduction in poststress FKBP5 mRNA expression may constitute useful therapeutic strategies

    Subjective Benefits of Bimodal Listening in Cochlear Implant Recipients with Asymmetric Hearing Loss

    Get PDF
    Objective: To investigate the influence of cochlear implant (CI) use on subjective benefits in quality of life in cases of asymmetric hearing loss (AHL). Study Design: Prospective clinical trial. Setting: Tertiary academic center. Subjects and Methods: Subjects included CI recipients with AHL (n = 20), defined as moderate-to-profound hearing loss in the affected ear and mild-to-moderate hearing loss in the contralateral ear. Quality of life was assessed with the Speech, Spatial, and Qualities of Hearing Scale (SSQ) pragmatic subscales, which assess binaural benefits. Subjective benefit on the pragmatic subscales was compared to word recognition in quiet and spatial hearing abilities (ie, masked sentence recognition and localization). Results: Subjects demonstrated an early, significant improvement (P <.01) in abilities with the CI as compared to preoperative abilities on the SSQ pragmatic subscales by the 1-month interval. Perceived abilities were either maintained or continued to improve over the study period. There were no significant correlations between results on the Speech in Quiet subscale and word recognition in quiet, the Speech in Speech Contexts subscale and masked sentence recognition, or the Localization subscale and sound field localization. Conclusions: CI recipients with AHL report a significant improvement in quality of life as measured by the SSQ pragmatic subscales over preoperative abilities. Reported improvements are observed as early as 1 month postactivation, which likely reflect the binaural benefits of listening with bimodal stimulation (CI and contralateral hearing aid). The SSQ pragmatic subscales may provide a more in-depth insight into CI recipient experience as compared to behavioral sound field measures alone

    Cochlear Implantation in Cases of Asymmetric Hearing Loss: Subjective Benefit, Word Recognition, and Spatial Hearing

    Get PDF
    A prospective clinical trial evaluated the effectiveness of cochlear implantation in adults with asymmetric hearing loss (AHL). Twenty subjects with mild-to-moderate hearing loss in the better ear and moderate-to-profound hearing loss in the poorer ear underwent cochlear implantation of the poorer hearing ear. Subjects were evaluated preoperatively and at 1, 3, 6, 9, and 12 months post-activation. Preoperative performance was evaluated unaided, with traditional hearing aids (HAs) or with a bone-conduction HA. Post-activation performance was evaluated with the cochlear implant (CI) alone or in combination with a contralateral HA (bimodal). Test measures included subjective benefit, word recognition, and spatial hearing (i.e., localization and masked sentence recognition). Significant subjective benefit was reported as early as the 1-month interval, indicating better performance with the CI compared with the preferred preoperative condition. Aided word recognition with the CI alone was significantly improved at the 1-month interval compared with preoperative performance with an HA and continued to improve through the 12-month interval. Subjects demonstrated early, significant improvements in the bimodal condition on the spatial hearing tasks compared with baseline preoperative performance tested unaided. The magnitude of the benefit was reduced for subjects with AHL when compared with published data on CI users with normal hearing in the contralateral ear; this finding may reflect significant differences in age at implantation and hearing sensitivity across cohorts

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore