599 research outputs found

    Developmental delay and progressive seizures in 2-month-old child with diffuse MRI abnormalities

    Get PDF
    2 month-old infant presented with seizures, radiological findings of diffuse elevated T2 signal with frontal lobe sparing and extensive symmetrical post contrast enhancement. At autopsy, the brain stem was pale and atrophic, with areas of cystic degeneration. Medullary sections showed perivascular Rosenthal fibre deposition

    Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT

    Full text link
    We present holographic descriptions of thermalization in conformal field theories using probe D-branes in AdS X S space-times. We find that the induced metrics on Dp-brane worldvolumes which are rotating in an internal sphere direction have horizons with characteristic Hawking temperatures even if there is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such systems indeed reveals thermal properties such as Brownian motions and AC conductivities in the dual conformal field theories. We also use this framework to holographically analyze time-dependent systems undergoing a quantum quench, where parameters in quantum field theories, such as a mass or a coupling constant, are suddenly changed. We confirm that this leads to thermal behavior by demonstrating the formation of apparent horizons in the induced metric after a certain time.Comment: LaTeX, 47 pages, 14 figures; Typos corrected and references added (v2); minor corrections, references added(v3

    An Infinite-Dimensional Family of Black-Hole Microstate Geometries

    Get PDF
    We construct the first explicit, smooth, horizonless black-hole microstate geometry whose moduli space is described by an arbitrary function of one variable and is thus infinite-dimensional. This is achieved by constructing the scalar Green function on a simple D6 anti-D6 background, and using this Green function to obtain the fully back-reacted solution for a supertube with varying charge density in this background. We show that this supertube can store parametrically more entropy than in flat space, confirming the entropy enhancement mechanism that was predicted using brane probes. We also show that all the local properties of the fully back-reacted solution can, in fact, be obtained using the DBI action of an appropriate brane probe. In particular, the supergravity and the DBI analysis yield identical functional bubble equations that govern the relative locations of the centers. This indicates that there is a non-renormalization theorem that protects these functional equations as one moves in moduli space. Our construction creates configurations that are beyond the scope of recent arguments that appear to put strong limits on the entropy that can be found in smooth supergravity solutions.Comment: 46 pages, 1 figure, LaTe

    Prospective longitudinal evaluation of treatment-related toxicity and health-related quality of life during the first year of treatment for pediatric acute lymphoblastic leukemia

    Full text link
    Background: Pediatric acute lymphoblastic leukemia (ALL) therapy is accompanied by treatment-related toxicities (TRTs) and impaired quality of life. In Australia and New Zealand, children with ALL are treated with either Children’s Oncology Group (COG) or international Berlin-Frankfurt-Munster (iBFM) Study Group-based therapy. We conducted a prospective registry study to document symptomatic TRTs (venous thrombosis, neurotoxicity, pancreatitis and bone toxicity), compare TRT outcomes to retrospective TRT data, and measure the impact of TRTs on children’s general and cancer-related health-related quality of life (HRQoL) and parents’ emotional well-being. Methods: Parents of children with newly diagnosed ALL were invited to participate in the ASSET (Acute Lymphoblastic Leukaemia Subtypes and Side Effects from Treatment) study and a prospective, longitudinal HRQoL study. TRTs were reported prospectively and families completed questionnaires for general (Healthy Utility Index Mark 3) and cancer specific (Pediatric Quality of Life Inventory (PedsQL)-Cancer Module) health related quality of life as well the Emotion Thermometer to assess emotional well-being. Results: Beginning in 2016, 260 pediatric patients with ALL were enrolled on the TRT registry with a median age at diagnosis of 59 months (range 1–213 months), 144 males (55.4%), majority with Pre-B cell immunophenotype, n = 226 (86.9%), 173 patients (66.5%) treated according to COG platform with relatively equal distribution across risk classification sub-groups. From 2018, 79 families participated in the HRQoL study through the first year of treatment. There were 74 TRT recorded, reflecting a 28.5% risk of developing a TRT. Individual TRT incidence was consistent with previous studies, being 7.7% for symptomatic VTE, 11.9% neurotoxicity, 5.4% bone toxicity and 5.0% pancreatitis. Children’s HRQoL was significantly lower than population norms throughout the first year of treatment. An improvement in general HRQoL, measured by the HUI3, contrasted with the lack of improvement in cancer-related HRQoL measured by the PedsQL Cancer Module over the first 12 months. There were no persisting differences in the HRQoL impact of COG compared to iBFM therapy. Conclusions: It is feasible to prospectively monitor TRT incidence and longitudinal HRQoL impacts during ALL therapy. Early phases of ALL therapy, regardless of treatment platform, result in prolonged reductions in cancer-related HRQoL

    Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set

    Get PDF
    The primary cause of morbidity and mortality in patients with multiple myeloma(MM) is an infection. Therefore there is great concern about the susceptibility to the outcome of COVID-19 infected patients with MM. This retrospective study describes the baseline characteristics and outcome data of COVID-19 infection in 650 patients with plasma cell disorders, collected by the International Myeloma Society to understand the initial challenges faced by myeloma patients during COVID-19 pandemic. Analysis were performed for hospitalized MM patients. Among hospitalized patinets, the median age was 69 years, and nearly all patients(96%) had MM. Approximately 36% were recently diagnosed(2019-2020), and 54% of patients were receiving first-line therapy. Thirty-three percent of patients have died, with significant geographic variability, ranging from 27% to 57% of hospitalized patients. Univariate analysis identified age, ISS3, high-risk disease, renal disease, suboptimal myeloma control(active or progressive disease), and one or more comorbidities as risk factors for higher rates of death. Neither history of transplant, including within a year of COVID-19 diagnosis, nor other anti-MM treatments were associated with outcomes. Multivariate analysis found that only age, high-risk MM, renal disease, and suboptimal MM control remained independent predictors of adverse outcome with COVID-19 infection. The management of MM in the era of COVID-19 requires careful consideration of patient and disease-related factors to decrease the risk of acquiring COVID-19 infection, while not compromising disease control through appropriate MM treatment. This study provides initial data to develop recommendations for the management of MM patients with COVID-19 infection

    Towards a Holographic Model of Color-Flavor Locking Phase

    Get PDF
    We demonstrate a holographic realization of color-flavor locking phase, using N=4 SU(Nc) SYM coupled to N=2 Nf fundamental hypermultiplets as an example. The gravity dual consists of Nc D3-branes and Nf D7-branes with world volume gauge field representing the baryon density. Treating a small number \tilde{N}c << Nc of D3-branes as Yang-Mills instantons on the D7-branes, we consider possible potential(s) on their moduli space or equivalently the Higgs branch. We show that a non-trivial potential can be generated by including the backreaction of the baryonic density on the D7-branes, this dynamically drives the instantons (= D3-branes) into dissolution. We interpret this as a color-flavor locking since the size of the instanton is the squark vev, and study the symmetry breaking patterns. Extending to finite temperature setup, we demonstrate that color-flavor locking persists, and the thermal effect provides additional structures in the phase diagram.Comment: 1+38 pages, 6 eps figures; typos corrected, acknowledgment and references added, discussions in sections 3.1 and 4.3 improve

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (Ξ£ETPb) summed over 3.1<Ξ·<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) β€œnear-side” (Ξ”Ο•βˆΌ0) correlation that grows rapidly with increasing Ξ£ETPb. A long-range β€œaway-side” (Ξ”Ο•βˆΌΟ€) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Ξ£ETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and Ξ£ETPb dependence. The resultant Δϕ correlation is approximately symmetric about Ο€/2, and is consistent with a dominant cos⁑2Δϕ modulation for all Ξ£ETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore