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Mills instantons on the D7-branes, we consider possible potential(s) on their moduli space

or equivalently the Higgs branch. We show that a non-trivial potential can be generated

by including the backreaction of the baryonic density on the D7-branes, this dynamically

drives the instantons (= D3-branes) into dissolution. We interpret this as a color-flavor

locking since the size of the instanton is the squark vev, and study the symmetry breaking

patterns. Extending to finite temperature setup, we demonstrate that color-flavor locking

persists, and the thermal effect provides additional structures in the phase diagram.
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1 Introduction and summary

In QCD phase diagram, the color-flavor locking (CFL) phase, or more generically, the

color superconducting phase, is expected to be present in a region with large chemical

potential µ for baryon number. Perturbative analytic study of this phase (see ref. [1, 2]

for reviews) has mainly been done for very large µ such that the QCD coupling is weak.

However, the issue on possible phase transitions from the hadronic phase at finite µ has not

been addressed, as the system becomes strongly coupled. So far, neither direct experimental

search, nor the lattice QCD simulation with “sign problem” have reached such region in

the phase space.

Holographic techniques from gauge/string duality [3–6] may offer new insights to such

issue, as they enable us to probe the strongly coupled region(s) in the phase diagram for

QCD-like theories. Although the duality strictly works for large number of colors Nc ≫ 1,
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the holographic techniques applied to QCD-like theories (so-called “Holographic QCD”)

have been rather successful in reproducing qualitative and semi-quantitative features of low

energy QCD dynamics. In this paper, among other things, we shall show that a color-flavor

locking occurs for a toy QCD-like theory at zero temperature, when the baryon chemical

potential µ exceeds its critical value.1

Problems of CFL in Holographic QCD. Before entering the details on how to realize

CFL phase in our model, let us summarize here the possible difficulties in obtaining it in

holographic QCD.

• In gauge/string duality, to treat Nf flavor branes as probes, we typically need to take

Nc ≫ Nf , while the CFL refers to a locking of the SU(3) flavor and the SU(3) color

symmetries, i.e. Nc = Nf .

• In gauge/string duality, usually only gauge-invariant quantities are considered, while

in the CFL phase the order parameter is a gauge variant di-quark condensate.

The first problem is strictly technical, as when Nf ∼ Nc, the backreaction of the flavor

branes cannot be ignored, and renders it difficult to analyze in supergravity.2 Our approach

used in this paper is to first separate some finite number of color branes Ñc (i.e. Ñc ≪ Nc),

and investigate the locking of SU(Ñc) color symmetry with the flavor symmetry. Though

this procedure of separation is artificial, our result may suggest a piece of the whole picture.

Another concern for the first problem is that in the strict Nc → ∞ limit, the theory does

not reveal the CFL phase [18]. We don’t consider this concern, since we will not perform

a comparison with the chiral density wave (which is supposed to be favored at the strict

Nc → ∞ limit) in our toy model, and also because a large but finite value of Nc may give

the CFL phase even for the real QCD [19].

As for the second problem above, it is familiar to us that gauge-invariant correlators

of QCD-like theories can be computed in their gravity duals, but in fact there are some

gauge-covariant quantities which one can also compute in the gauge/string duality.3 In

this paper, we use holographic techniques for Coulomb phase of supersymmetric Yang-

Mills (SYM) theories [20, 21], where a part of the gauge symmetry decouples from the rest.

When the rank of this decoupled gauge subgroup is small, we may treat them in the same

way as the probe flavor branes, and their gauge symmetry is manifest in the dual gravity

description. We shall describe this in detail later.

Supersymmetric QCD, the holographic dual and phase diagram. The toy model

we shall focus on is N = 4 SYM coupled to N = 2 fundamental matter hyper multiplets.

1Disclaimer: Note that our theory is not QCD but rather a supersymmetric generalization of it, and

we shall only treat the squark condensation for the CFL. For a field-theoretical treatment of the squark

condensation, see for example ref. [16, 17].
2There are examples in which fully backreacted geometry is obtained (see for example ref. [13–15]), and

it would be interesting to generalize our results to those examples.
3Examples of that kind include computations explicitly uses string worldsheets in the dual gravity

backgrounds; gluon scattering amplitudes, drag forces, quark-antiquark forces, heavy meson spectroscopy

and Regge trajectory.
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Figure 1. The structure of the phase diagram of the N = 2 SQCD. (Scales in this figure is not

accurate. See [23–25, 31–38] for details.)

The holographic dual of this theory was proposed by Karch and Katz [22], as a minimal

deformation of the N = 4 SYM to include quarks. The quark superfields are introduced

as the lowest excitation on a string connecting Nc D3-(color-)branes and Nf D7-(flavor-)

branes. For Nc ≫ Nf , D3-branes can be replaced by AdS5 × S5 geometry, and the flavor

dynamics of the strongly coupled large Nc SQCD can be analyzed by the probe flavor D7-

branes in that geometry. The quark mass m quark is proportional to the distance between

the D3-branes and the D7-branes.

For zero temperature T = 0 and µ = 0, quarks and gluons are deconfined while quarks

can form deeply bound mesons. The phase structure of this theory has been analysed by

the holographic duality [23–25, 31–38] and at the leading large Nc expansion, it is known

that there are two phases in the (µ, T ) diagram: the meson phase and the melted meson

phase (see figure 1). In both phases, gluons are deconfined. In the meson phase, quarks are

bound to form mesons with their discrete spectrum,4 while in the melted meson phase, the

meson spectrum is continuous, and there appears nonzero baryon number density. These

two phases are characterized by the shape of the probe Nf D7-branes [42–53]. For the finite

temperature, the background geometry is an AdS black hole. The meson phase corresponds

to the D7-branes away from the horizon, which is called “Minkowski embedding”. On the

other hand, in the melted meson phase, the D7-branes touch the horizon (see figure 2),

and is called “black hole embedding”.

Since the local gauge symmetry U(Nf ) on the D7-brane is identified as the global

U(Nf )V symmetry of the SQCD via the gauge/string duality, the chemical potential µ is

identified as the value of the temporal component of the overall U(1) gauge field on the

coincident D7-branes. In the meson phase, this gauge field is just a constant µ, while in the

melted meson phase, there appears electric flux on the D7-branes: this configuration has a

lower free energy which the holographic dual can compute, and thus favored. The order of

the phase transition depends on the point on the phase transition line in the (µ, T ) diagram:

it is first order for smaller µ and finite T [23, 24], second order for T = 0 [25], and third

order for the most part of finite µ and finite T [26]. The critical chemical potential for

4The meson spectrum at zero baryon density is studied in refs. [39–41].
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D7 D7

Figure 2. Two embeddings of the D7-branes in the geometry. The shaded ball denotes a black

hole with a horizon of the topology S5. Left: Minkowski embedding (meson phase). Right: black

hole embedding (melted meson phase).

T = 0 is µcr = m [25]. In the melted meson phase, the shape of the D7-branes is a spike

whose tip is inside the horizon. Electrically charged spikes on D-branes are identified as

fundamental strings, so the existence of the electric flux means that the quark number

density is nonzero. These are briefly reviewed in section 2.1.

Dynamically driven CFL. Let us explain how the CFL phase of this theory can be

realized in its gravity dual. First of all, note that our theory is N = 2 SQCD which

includes squarks carrying the baryon (quark) number. So, once the chemical potential

becomes large enough, we expect squark condensation, instead of di-quark condensation.

We shall see this squark condensation in this paper: this is certainly a CFL, but also a

Higgs phase.

As suggested before, we separate Ñc D3-branes among Nc and treat them as probes,

Ñc ≪ Nc. The relevant quark/squarks are strings connecting the Ñc D3-branes and the

Nf D7-branes. Condensation of strings connecting Dp-branes and D(p + 4)-branes is well-

known [54–56]: the Dp-branes are dissolved into the D(p + 4)-branes, and the Dp-branes

can be seen as finite size instantons on the D(p + 4)-branes. Therefore, the CFL Higgs

phase of the SQCD is equivalent, via the gauge/string duality, to the situation where the

size of the instantons on the probe D7-branes is driven to become larger. We will show in

this paper that this is indeed the case, by computing the potential of the instanton size

modulus on the D7-brane U(Nf ) gauge theory, in the melted meson phase. D3-branes are

moved onto the D7-branes and dissolve on the D7-branes dynamically.

This Higgs phase for T = 0 was described in refs. [57–59] (see also ref. [60, 61]), and the

potential for the instanton size modulus was considered in the absence of baryon density.

At T = 0, the resultant potential vanishes (we review it in section 2.2 and 2.3), thus there

is no CFL. Our new point is that including a backreaction from the D7-brane electric flux

(section 3), this generates a nontrivial potential for the intanton size modulus (section 4).
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The new potential has a run-away behavior (see figure 5), causing the instantons to expand,

hence the CFL Higgs phase is prefered. This new potential exists only in the melted meson

phase, so, for T = 0, above the critical baryon chemical potential, the CFL Higgs phase

appears — this is what we show using the gauge/string duality for the SQCD.

The way this new potential emerges is quite intriguing. This is essentially a Chern-

Simons (CS) term on the D7-branes,
∫

tr F ∧F ∧F ∧C2. The backreaction of the electric

flux on the D7-branes generate a nonzero constant Ramond-Ramond (RR) 3-form flux

F3 = dC2 (3.1).5 Substituting this to the CS term, we obtain
∫

tr A ∧ F ∧ F , thus the

electric potential At on the D7-brane interacts with the instanton density trF ∧ F , which

gives a nontrivial potential (4.9).6 This generation of F3 can also be thought of being

sourced by baryon vertices, which are nothing but D5-branes wrapping S5 [7–11] (see also

ref. [12]). If one smears them, they provide a constant magnetic flux F3 along x1-x2-x3

directions (section 3.1). So, our work is an example of backreacting baryon vertices.

We also analyze the thermalized case with T 6= 0 (section 5). Ref. [62] showed that, for

the finite temperature, a nontrivial potential (5.23) for the size modulus of the instanton on

the D7-branes is generated, before including the baryon density. This potential is minimized

at a finite value of the instanton size. Therefore a Higgs CFL phase is prefered. Introducing

baryonic density, we analyze the backreaction and our new CS-type potential (5.24) adds

up on it. This addition does not change the result that the instanton size is nonzero, so

we still have the Higgs CFL phase.

If we naively adds up the two potentials (the thermal potential (5.23) given in ref. [62]

and our CS-type potential (5.24)), we find that there are two CFL phases: for small values

of the baryon density, we have the minimum at a finite value of the instanton size, while

for large values of the density the minimum sits at the infinite size modulus. An expected

phase diagram is given in figure 3. However, since the potential computed in this paper

is valid only around small size of the instanton, this conclusion is a qualitative one and

deserves further study for full backreaction of the geometry.

We conclude by discussing some interesting future directions in section 6.

2 Instanton on the flavor branes

We start with constructing a solution for the equations of motion on the Nf flavor D7-

branes, which has nonzero instanton number. This solution corresponds to the dissolved

D3-branes in the flavor D7-branes. In this section, the probe approximation for the D7-

branes is adopted, while the important backreaction will be treated in section 3, and its

effect on the solution which we will find in this section will be studied in section 4 where

the dynamical dissolution of the instantons (D3-branes) due to the finite baryon density

is shown.

5The importance of this coupling between the NSNS 2-form and the F3 for the baryons was found in

ref. [12].
6 A similar CS mechanism was used for treating baryons [69, 71] in Sakai-Sugimoto holographic

model [72], but used in a rather different way: the CS term was to stabilize the size of a single baryon in

the model.
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Figure 3. The structure of the phase diagram of the N = 2 SQCD given by a naive addition of the

instanton size potential coming from the back reaction of the geometry. The melted meson phase

(corresponding to the black hole embedding of the D7-branes) is devided into two distinct phases.

The upper half denoted as “thermal CFL Higgs phase” is dominated by the thermal potential of

the instanton size, in which the size is roughly equal to the horizon size. The lower half denoted

as “CFL Higgs phase” is dominated by the one generated by the backreaction due to the baryon

density, in which the instanton size is much larger than the horizon size.

2.1 Review of the D3D7 system at finite baryon density

Let us begin for simplicity, by considering the case with zero temperature, which corre-

sponds to AdS5 × S5 background in type IIB Supergravity. We shall embed in it a stack

of NF space-time filling D7-branes, with a non-trivial world volume baryonic Ub(1) gauge

field turned on. As it turns out, the exact shape of D7s and profile of the gauge field can

be analytically solved in such regime [25], which we shall review in some detail next.

The AdS5 × S5 metric, as generated by the backreaction of Nc D3-branes, is given in

Poincare coordinates:

ds2 =
r2
6

R2
ηµνdxµdxν +

R2

r2
6

(
dr2

6 + r2
6ds2

5

)
,

R4

α′2 = 4πgsNc = λ , (2.1)

gsC4 =
r4
6

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.2)

gsF5 = (1 + ∗10)d(gsC4) = 4R4(dΩ5 + ∗10dΩ5) . (2.3)

Here we have listed out the RR 4-form field C4 and the self-dual 5-form field strength F5,

whereas the string coupling gs = eΦ0 remains constant. The indices µ ν runs over 0, 1, 2, 3,

ηµν denotes four dimensional Minkowski metric, and ds2
5 is the metric for a unit five-sphere.

For our later purpose, let us also reparametrize the flat six internal dimensional metric as:

dr2
6 + r2

6ds2
5 = dr2 + r2ds2

3 + dy2 + dz2 , (2.4)

with r2
6 = r2+y2+z2. Here ds2

5 (ds2
3) is the metric on the unit S5 (S3). In such coordinates,

there exists U(1) ⊂ SO(6) isometry group which rotates (y, z).

Introducing Nf (≪ Nc) probe D7-branes into (2.1), their Dirac-Born-Infeld (DBI)

action is given by [27]

SD7
DBI = −TD7

∫
d8ξ e−Φ tr

√
− det(Gab + 2πα′Fab) . (2.5)
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Here ξa, a = 0, . . . 7 are the eight dimensional D7-brane world volume coordinates, Gab

is the pullback metric and Fab is the worldvolume gauge field, which for now, we shall

only turn on the diagonal baryonic Ub(1) component. TD7e
−Φ0 = 1/((2π)7α′4gs) is the

tension of the D7-brane. The trace is taken over the symmetrized gauge indices. Note

that the symmetrized trace is valid only up to the fourth order in α′ [28–30]. However,

it is known that, at this order, the non-abelian DBI equations are solved at least for the

instanton configurations.

We choose the gauge for the D7-brane worldvolume coordinates as

(ξ0, . . . ξ3) ≡ (t, . . . , x3) , (ξ4, . . . , ξ7) ≡ (r, S3) , (2.6)

so that the D7-branes are spacetime filling and spanning in the four flat internal directions

given by r and S3 in (2.4). The D7-branes therefore have asymptotic worldvolume geometry

of AdS5 ×S3. The precise D7-brane embedding are specified by the transverse coordinates

(y, z), which become D7-brane scalar fields. To preserve the isometry of S3, we have

(y(r), z(r)); the U(1) isometry further sets z(r) = 0. The induced D7-brane world volume

metric is therefore:

Gabdξadξb =
(r2 + y(r)2)

R2
(ηµνdxµdxν) +

R2

(r2 + y(r)2)

(
(1 + (y′(r))2)dr2 + r2ds2

3

)
, (2.7)

where ′ denotes d
dr . Turning on only the temporal component of the Ub(1) gauge field

At(r), which we again take to be dependent purely on r, the resultant D7-brane DBI

action (density)7 is:

SD7
DBI/V4 =

∫
drL = −N

∫
dr r3

√
(1 + (y′(r)2) − (2πα′A′

t(r))
2 , (2.8)

where N = NfTD7Vol(S3)g−1
s = NfTD7(2π

2)g−1
s , and factor Nf arises from the trace.

As noted in ref. [25], the action (2.8) does not contain explicit dependences on y(r)

and At(r), their equations of motion yield following constants of motion:

δL

δy′
= −N r3 y′√

1 + (y′)2 − (2πα′A′
t)

2
= −c , (2.9)

δL

δ(2πα′A′
t)

= N r3 2πα′A′
t√

1 + (y′)2 − (2πα′A′
t)

2
= d . (2.10)

A useful relation can also be readily deduced

2πα′A′
t(r) =

d

c
y′(r) . (2.11)

Using this and rearranging (2.9) and (2.10), we obtain

2πα′A′
t(r) =

d

N
√

r6 + r6
0

, y′(r) =
c

N
√

r6 + r6
0

, (2.12)

7We divide out the infinity volume of four Minkowski spacetime V4.
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where we have defined:

r6
0 =

d2 − c2

N 2
. (2.13)

We can readily integrate (2.12) to obtain the profiles for y(r) and 2πα′At(r):

y(r) =
c

2 31/4N r2
0

F

(
ϕ(r),

2 +
√

3

4

)
,

2πα′At(r) =
d

2 31/4N r2
0

F

(
ϕ(r),

2 +
√

3

4

)
, (2.14)

ϕ(r) = arccos

(
1 − (

√
3 − 1)(r/r0)

2

1 + (
√

3 + 1)(r/r2
0)

2

)
, (2.15)

where F(ϕ, k) is the incomplete elliptic integral of the first kind. In the above computa-

tions, we have taken d > c, the resultant solutions (2.14) should be regarded as the zero

temperature analog of the aforementioned black hole embedding [23–25]. In such case, the

D7-branes extend all the way to the “horizon” located at
√

r2 + y(r)2 = r6 = 0 (z(r) has

been set to zero) and we have used this fact to fix the integration constant. The profile

of y(r) in (2.14) in (r, y(r)) plane displays a sharp peak towards y(0) = 0 around r = 0

(or four dimensional cone when sweeping out the S3), and flattens out to approach 2πα′m
as r → ∞, where m is the bare quark mass. This is in contrast with the Minkowski

embedding where D7-branes lie at finite distance from the horizon, or
√

r2 + y(r)2 > rH .

In the presence of finite baryon density, it was shown in ref. [23, 24] that only black hole

embedding is stable and physical, we shall discuss them in more details in section 5.

Finally one can relate the asymptotic values of y(r) and 2πα′At(r) with the quark

mass m and the chemical potential µ as y(∞) → 2πα′m and 2πα′At(∞) → 2πα′µ [23, 24],

and obtain the following relations [25]:

c = γN (2πα′)3(µ2 − m2)m , (2.16)

d = γN (2πα′)3(µ2 − m2)µ . (2.17)

Here the constant γ =
( √

π
Γ(1/3)Γ(7/6)

)−3
∼ 0.363. This completes our review on the zero

temperature D7-brane embedding in the presence of baryonic Ub(1) gauge field. To real-

ize the color-flavor locking phase, we shall next consider turning on a SU(Nf ) instanton

configuration within the internal four cycle as a perturbation.

2.2 Instanton solution

We are ready to consider the non-Abelian part of the U(Nf ) gauge group on the flavor

D7-branes, including the instantons. In the equations of motion, the overall Ub(1) discussed

earlier is coupled to the SU(Nf ) subsector where we like to put the instantons representing

the D3-branes.

As we shall see later, for large ’tHooft coupling λ, the non-Abelian part can be re-

garded as a fluctuation around the fixed Ub(1) background (2.14). We substitute the Ub(1)

solution (2.12) of ref. [25] into the action and consider only the SU(Nf ) non-Abelian part

– 8 –
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of the action (2.5). We are interested in solutions having the instanton charges in the sub-

space (ξ4, . . . , ξ7), so we just turn on SU(Nf ) Ai(ξ) (i = 4, . . . , 7) among the gauge fields,

and let them be dependent on only the coordinates ξi.

In the action, the effective four cycle metric felt by these non-Abelian components is

computed as follows. We note that the background At(r) can be regarded as an additional

transverse scalar field in the D7-brane DBI action, as we are interested in only the space

spanned by (ξ4, . . . , ξ7). Indeed, the effective metric for the directions (ξ4, . . . , ξ7) can be

written formally as

G
(4)
ij = gij + gyy∂iy∂jy + gtt∂iAt∂jAt(2πα′)2 , i, j = 4, 5, 6, 7. (2.18)

Since y(r) and 2πα′At(r) are functions of r =
√∑7

i=4(ξ
i)2, we can rewrite above as

G
(4)
ij =

R2

r2
6

(
δij +

ξiξj

r2

(
y′2 − (2πα′A′

t)
2
))

. (2.19)

So the determinant in the DBI action (with a, b running 8-dimensional coordinates), in-

cluding the non-Abelian field strength Fij in the SU(Nf ), is written as

− det(Gab + 2πα′Fab) = det

(
G̃

(4)
ij + 2πα′Fij

r2 + y2(r)

R2

)
(2.20)

where the unwarped effective four cycle metric G̃
(4)
ij is given by

G̃
(4)
ij ≡ δij +

ξiξj

r2
(y′2 − (2πα′A′

t)
2) . (2.21)

Thus the total DBI action including the non-Abelian field strengths Fij is

SD7
DBI = −TD7

∫
d4x

∫
d4ξ e−Φ tr

√
det

(
G̃

(4)
ij + 2πα′Fij

r2 + y2(r)

R2

)
. (2.22)

In this expression, note that the prefactor of Fij is suppressed by λ−1/2. In fact, 2πα′/R2 =

2π/
√

λ, with the relation R4 = 4πgsNcα
′2. We can therefore regard the instanton as a

fluctuation around the fixed Ub(1) background sourced by At, for a large λ.

In addition to this DBI action, now we also have a Chern-Simons (CS) term by coupling

with background RR 4-form C4 given in (2.2) with the non-Abelian field strength Fij :

SD7
CS = µD7

∫
d4x

∫
d4ξ

1

gs

(
r2 + y(r)2

R2

)2
(2πα′)2

8
tr
[
ǫijklFijFkl

]
, (2.23)

with µD7 = TD7 We will show that self-dual configurations of the non-Abelian gauge fields

with respect to the metric G̃
(4)
ij satisfies a particular property: the Fij-dependent part

of the DBI action (2.22) is completely canceled by the Chern-Simons term (2.23). This

interesting property of the instantons on the D7-branes was explicitly shown for a special

case in ref. [59] which treated the case of the flat D7-branes (c = d = 0). We use the

following formula in generic curved space [63]

√
det(g + F ) =

√
det g +

1

4

√
detg

∣∣Fij ∗4 F ij
∣∣ (2.24)
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for the self-dual configuration

Fij = ∗4Fij . (2.25)

Here the Hodge dual operation ∗4 is with respect to the effective four cycle metric and

defined by a covariant totally antisymmetric tensor ηijkl,

∗ F ij ≡ 1

2
ηijklFkl , ηijkl =

1√
det g

ǫijkl , ǫ4567 = 1 . (2.26)

This formula was shown in ref. [63] for Abelian field strength, and now if we assume

that the non-Abelian DBI action is written with the symmetric trace prescription, this

equality also holds for the present non-Abelian case. Once we apply this formula to our

DBI action (2.22), for the self-dual instanton configuration with respect to the metric G̃
(4)
ij ,

we obtain

SD7
DBI = −TD7

gs

∫
d4x

∫
d4ξ tr

[√
det G̃

(4)
ij +

(2πα′)2

8

(
r2+y(r)2

R2

)2

ǫijklFijFkl

]
. (2.27)

Note that we rewrite the Hodge dual by the constant tensor ǫijkl. Using the relation

TD7 = µ7 and gs = eΦ is fixed, it is obvious that the FF dependent terms in the DBI is

canceled by the CS actions (2.23).

It is interesting that this cancellation occurs not only for the flat D7-branes with no

electric flux on it but also our present case, albeit our D7-brane configuration breaks the

supersymmetries completely. The state with the D3 branes and the D7 branes connected

by the fundamental strings in flat space is supersymmetric. However, in our case, the spike

does not extend to infinity, supersymmetry is thus broken. In ref. [59], it was argued that

this cancellation is due to the BPS property of the D3D7 system. Here we could show the

same cancellation even with the non-supersymmetric electric flux, and there is therefore

no potential on the instanton moduli space.

However, in the remaining part of this paper, we will see that in fact a backreaction of

this electric flux on the D7-branes will lift the cancellation slightly, and induces a potential

term for the instanton moduli space. It is an essential point which we like to focus on in

this paper.

2.3 Conformal Metric and Explicit Instanton Configuration

Our self-dual configuration of the non-Abelian field strength is with respect to the curved

“effective” metric G̃
(4)
ij . On the other hand, the simpler case of ref. [59] has a flat metric δij

instead. In the following, we show that a coordinate transformation can turn the effective

unwarped four cycle metric G̃
(4)
ij (2.21) into a conformally flat metric, so that in the new

coordinate the standard BPST instanton configuration suffices. In any conformally flat

space, the self-dual equation on it is simply the same as the self-dual equation on the

flat space.

It is easy to see that the metric G̃
(4)
ij (2.21) can be written in the polar coordinate as

ds2 =
(
1 + (y′2 − (2πα′A′

t)
2)
)
dr2 + r2ds2

3 . (2.28)
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Substituting the explicit expressions for y′(r) and 2πα′A′
t(r) (2.12), we can deduce that

1 + y′2(r) − (2πα′A′
t(r))

2 =
r6

r6 + r6
0

. (2.29)

To show (2.28) is conformally flat, let us consider

ds2 =

(
r6

r6 + r6
0

)
dr2 + r2ds2

3 = S(r̃)2
(
dr̃2 + r̃2ds2

3

)
(2.30)

and solve for r̃ and S(r̃). First the consistency in S3 directions demands that r = S(r̃)r̃,

the relevant differential equation in the r and r̃ directions then gives:

dr̃

r̃
=

r2

√
r6 + r6

0

dr . (2.31)

Integrating both sides, we can obtain the desired change of variable,

r̃ = r

[
1 +

√
1 + r6

0/r
6

2

]1/3

. (2.32)

The integration constant is fixed so that r ∼ r̃ for large r. We can also invert the rela-

tion (2.32) to obtain

r

r̃
= S(r̃) =

[
1 − r6

0

4r̃6

]1/3

. (2.33)

In this new coordinate r̃, the self-dual configuration is just the familiar BPST instanton.

When bringing that to the original coordinate r, we obtain a solution to the self-dual

equation in the space with the metric G̃
(4)
ij . In section 4, we shall use this explicit coordinate

transformation to evaluate the potential for the instanton size moduli.

3 Linearized supergravity backreaction

In this section, we shall compute a linearized perturbation to the supergravity back-

ground (2.1), (2.2), (2.3), due to the electric field At on the D7-branes. Let us first recall

that the electric flux, which is responsible for the Ub(1) baryon charge, can be regarded

as fundamental strings dissolved in the D7-branes. This is because in the DBI action the

electric field is combined with the (pull-back of) NSNS 2-form field B̂2 in a gauge-invariant

fashon, 2πα′Fab + B̂ab. Such electrified D7-branes can be regarded as a source to the bulk

3-form flux H3 ≡ dB2, acting as small perturbation to the background SUGRA solution.

Moreover from the consistent equations of motion of the SUGRA, this also induces RR

3-form flux F3, which we will proceed to extract in two different ways. The induced F3 is

important for the dynamics of the instantons on the D7-branes as we will see in the next

section. So, in this section, we derive the exact amount of this F3 as a backreaction of the

electrified D7-brane configuration, which is

F
(3)
123 =

8π3α′2d
Nc

. (3.1)

First in section 3.1, we present an intuitive derivation of the F3 by using smeared

baryon vertices. In section 3.2, we compute the backreaction to the geometry due to the

electrified D7-branes. The result of section 3.2 coincides with that of section 3.1.
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3.1 Smeared baryon vertices

The electric fields on the D7-branes are interpreted as fundamental strings connecting the

D7-branes and the D3-branes, therefore they are quarks. The number density of them is

given by (2.10), quark density = 2πα′d. This means that the baryon number density is

2πα′d/Nc.

The D7-brane spike terminates at the origin r6 = 0. If we take the flux conservation

at the tip of the spike seriously, we need to assume the presence of the baryon vertices

surrounding the origin. As is well known, D5-branes wrapping the S5, which are called

baryon vertices, can give a charge at which the fundamental strings can end [7–11]. In

this subsection, we compute a back reaction of these baryon vertices smeared on the plane

x1-x2-x3 at r6 = 0. Our result is (3.1).8

The relevant terms from the type IIB supergravity and D5-brane DBI actions are

− 1

4κ2
10

∫
d10x

√−g10|F7|2 + µ5

∫
C6 , (3.2)

with 4κ2
10 = 2(2π)7α′4 and µ5 = (2π)−5α′−3. We have also used F7 = dC6 = ∗10F3. It is

enough to consider the explicit component C6 = C
(6)
0θ1θ2θ3θ4θ5

dx0∧dθ1∧dθ2∧dθ3∧dθ4∧dθ5,

then (3.2) becomes

∫
d4xdr6dθ1dθ2dθ3dθ4dθ5

[ −1

4κ2
10

r3
6

R8

1

sin4 θ1 sin3 θ2 sin2 θ3 sin θ4
(∂r6

C
(6)
0θ1θ2θ3θ4θ5

)2

+µ5
2πα′d

Nc
δ(r6 − ǫ)C

(6)
0θ1θ2θ3θ4θ5

]
, (3.3)

where the position of the baryon vertices is specified as r6 = ǫ with ǫ → 0. This can be

solved as

∂r6
C

(6)
0θ1θ2θ3θ4θ5

=
8π3α′2d

Nc

R8

r3
6

sin4 θ1 sin3 θ2 sin2 θ3 sin θ4 , (3.4)

where we have also used the explicit expressions for κ2
10 and µ5. Taking a Hodge dual in

the background AdS5 × S5, we immediately obtain (3.1).

The above analysis leads to an important consequence which resolves a problem in

introducing baryons in Dp/Dq systems. The phase structure of fundamental matter at

finite baryon density has been studied by introducing electric flux on probe Dq-branes in

Dp-brane background [23, 24, 31–34, 64]. The baryon number there was considered to be

carried by free quarks in the sense that the quark density, or the electric flux, can take any

value as long as the total number of strings takes an integer. In other words d is quantized

in units of 1.9 It is natural to ask what if one considers baryons instead of the quarks

in the system. As was pointed out in refs. [23, 24, 64] and studied in detail in ref. [65],

it turned out that there is no stable baryon vertex solution outside the horizon, in the

deconfinment phases.

8A related issue on backreaction of baryon vertices was discussed in ref. [67, 68].
9In this paper this d is the density, but one can imagine localized quarks/baryons instead, for the

discussion here.
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A resolution of this problem of the missing baryon vertex is that the baryon vertices

undergo a brane/flux transition and leaves only RR flux outside the horizon. The DBI

part of the D5-brane baryon vertex disappears since its volume element vanishes (the time

direction of the geometry shrinks), while the CS term of the D5-brane action remains to

source the bulk RR 3-form flux F3. We can see this “remnant” of the baryon vertices

anyway, by solving consistently the SUGRA equations of motion for the NSNS B-field, as

in the following section 3.2. In this section we work with T = 0, but the role of the horizon is

played by the origin r6 = 0. Similar transition can be found in a simpler example. Consider

AdS5 × S5 with N units of the RR flux and put an additional probe D3 brane parallel to

the boundary in this spacetime at certain r6. This is a supersymmetric configuration (the

Coulomb phase) and r6 is a modulus. When the brane goes to r6 = 0, the DBI part of

the D3 brane becomes zero. The correct picture for this case is given by AdS5 × S5 with

N + 1 units of the flux. Therefore, the probe D3 brane is replaced by a unit of flux. This

argument can be applied to the finite temperature case.

It is interesting that the quantization condition of this F3 in (3.1) shows that the

quark number density d is quantized not in units of 1 but in units of Nc.
10 This would

suggest that the quarks in the Dp/Dq system are always thought to be components of

baryons. We will see in section 5 that the analysis of section 3.2 still applies to a finite

temperature system despite the fact that the end points of the strings are hidden inside

the black hole horizon.

3.2 Backreaction from the D7-brane electric flux

Instead of assuming the presence of the D5-brane baryon vertices, here we provide an

alterative derivation for (3.1) by solving the backreaction due to the electric flux on the

D7-branes. In this subsection, we demonstrate this by looking at the equation of motion for

the NSNS 2-form field B2. For the validity of our approximation adopted in this section,

see section A. There it is shown that we need to work in the region µ − m ≪ µ ,m so that

our apprixmation is valid.

3.2.1 Sourcing the bulk NS-NS B-field

First, let us examine how the electric flux on the D7-branes can act as a source for the

bulk NSNS 2-form field B2. The DBI action includes the NSNS B-field as

SD7
DBI = −TD7

∫
d8ξ e−Φ tr

√
− det(gab + 2πα′Fab + B̂ab) , (3.5)

where B̂ab is the induced NSNS B-field carried by the fundamental strings in the D7-

branes. We are treating here only the overall Ub(1) ⊂ U(Nf ) sector (2.12) only, so tracing

over already gave the factor Nf . Since we are interested in a linear perturbation by this

source, we expand this action around B̂ = 0 to the linear order in the B-field:

SD7
DBI

∣∣∣∣
O(B̂)

= −
∫

d4xdr B̂0r

[
δL

δ(2πα′A′
t)

]

B=0

, (3.6)

10The flux is smeared along the space directions parallel to the boundary: x1, x2, x3. With these directions

being non-compact, we do not need to quantize the flux from computational point of view. However, our

motivation of this quantization comes from the fact that the flux is sourced by the D5 branes.
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where L is the Lagrangian density as defined in (2.8). This expression follows since the

B-field appears in the DBI action (3.5) only as a gauge invariant combination of 2πα′F +B̂.

More explicitly they appear as (2πα′A′
t − B̂0r)

2 in the action, hence we have the additional

negative sign. The shape of the D7-branes is specified only by y(r), so the induced B-field

is just B̂0r = B0yy
′(r) + B0r. Together with (2.10), we have

SD7
DBI

∣∣∣∣
O(B)

= −d

∫
d4xdr

(
B0yy

′ + B0r

)
. (3.7)

This is the source term for the bulk NSNS B-field.

For our later purpose, we can express (r, y, z) in terms of angular coordinates for the

S5 {θ1, . . . , θ5}:

z = r6 cos θ1 , y = r6 sin θ1 cos θ2 , r = r6 sin θ1 sin θ2 , (3.8)

the remaining θ3, θ4, θ5 parametrize S3 in (2.7). For our D7-brane embedding specified

by y(r), z = 0, this translates into setting θ1 = π/2. We can further invert the relation

r2
6 = r2 + y(r)2, and express θ2 as a function of r6 via:

θ2(r6) = arctan
r(r6)

y(r(r6))
. (3.9)

So in terms of r6 and these angular coordinates, the source coupling for the NSNS B-field is

SD7
DBI

∣∣∣∣
O(B)

= −d

∫
d4x

∫
dr6 dΩ5

δ(θ1 − π/2)δ(θ2 − θ2(r6))

2π2 sin3 θ2

(
B0r6

+ B0θ2

∂θ2

∂r6

)
. (3.10)

Note that to incorporate the D7-brane DBI action into the full 10 dimensional supergravity

analysis, we have inserted delta-functions which restrict to the specific embedding we are

considering. In particular we have changed the integral to the whole angular coordinates,

so we divide it by the volume V3 = 2π2 of the unit 3-sphere.

We will now concentrate on the region r ∼ 0 to simplify our situation. The spike has

a rigid cone shape around the origin r = 0.

Around the tip of the cone r ∼ 0, ∂θ2/∂r6 diverges, so around there we have

θ2 ∼ θ
(0)
2 ≡

√
d2 − c2

c
. (3.11)

With this, we can approximate the source term (3.10) as

SD7
DBI

∣∣∣∣
O(B)

= − d

2π2

∫
d4x

∫
dr6 dΩ5 δ(θ1 − π/2)δ(θ2 − θ

(0)
2 )

B0r6

sin3 θ
(0)
2

. (3.12)

3.2.2 Extracting the RR 3-form flux

We now would like to extract the linearized perturbation F3, which will be crucial for

generating the potential on the instanton moduli space. For this, at the linear order

perturbation, it is sufficient to consider the equations of motion for the NSNS B-field,

with this limiting source term (3.12) included, as other equations are affected only at
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higher orders (we will check this later, see eq. (A.1) and discussions thereafter). It will be

important that near the r ∼ 0 region, this source is only for B0r6
.

The relevant part of the type IIB supergravity action is [66]

SB = − 1

4κ2
10

∫
d10x

√−g10 e−2Φ|H3|2 +
1

4κ2
10

∫
F5 ∧ B2 ∧ F3

− 1

4κ2
10

∫
d10x

√−g10
1

2
|F̃5|2. (3.13)

Here

F̃5 ≡ F5 −
1

2
C2 ∧ H3 +

1

2
B2 ∧ F3 , (3.14)

so, in the third term in (3.13), the term linear in B2 is

− 1

8κ2
10

∫
(−C2 ∧ H3 + B2 ∧ F3) ∧ ∗F5 . (3.15)

For a self-dual background 5-form flux F5 = ∗F5 (2.3), this is equal to the second term

of (3.13).

Substituting the AdS5×S5 background metric and the RR 5-form flux (2.3) and writing

out in explicit components, we obtain

SB = − 1

2(2π)7α′4g2
s

∫
d4xdr6dΩ5 r3

6

[
H2

0r6θ1
+

1

sin2 θ2
H2

0r6θ2

]

+
1

(2π)7α′4

∫
d4xdr6dΩ5 B0r6

F
(3)
1232

4πNc(α
′)2 . (3.16)

Here we used the explicit 5-form flux on the S5, F5 = 24πNcα
′2dΩ5 (2.3). Together with

the source action (3.12), the total equation of motion for the NSNS B-field is

0 =
r3
6

(2π)7α′4g2
s

[
∂θ1

(
sin4 θ1 sin3 θ2H0r6θ1

)
+ ∂θ2

(
sin2 θ1 sin3 θ2H0r6θ2

)]

+
1

(2π)7α′4 F
(3)
123 sin4 θ1 sin3 θ2 24πNcα

′2

−δ(θ1 − π/2)δ(θ2 − θ
(0)
2 )

d

2π2
. (3.17)

We can recognize this as a 1+2-dimensional electromagnetism on a compact space spanned

by θ1 and θ2. The first term is a total divergence, so the remaining terms should vanish

when we perform an integration over the 2-dimensional space. This condition results in

1

(2π)7α′4 F
(3)
123

∫ π

0
dθ1 sin4 θ1

∫ π

0
dθ2 sin3 θ2 (24πNcα

′2) =
d

2π2
. (3.18)

Performing the integration and re-arranging, we obtain the constant RR 3-form flux F
(3)
123 as

given in (3.1). This is the leading order effect of the backreaction of the D7-brane electric

flux. Note that the supergravity equation of motion for the F3 flux is trivially satisfied

with this constant configuration.

Interestingly, this result (3.1) is the same one obtained previously by solving the F3

equation of motion with the smeared baryon vertices in section 3.1. Here we have not

assumed the presence of the baryon vertices, but the supergravity equation of motion

“knows” the presence for its consistency.
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4 Dissolution of the instanton and color-flavor locking

In this section, we show that the backreacted supergravity flux (3.1) generates a nontrivial

potential for the instanton moduli space (section 4.1). It provides a dynamical mechanism

for fattening the size of the instanton on the flavor D7-branes. We compute the potential

explicitly in section 4.2.

This is a dynamical color-flavor locking in the holographic QCD, because the size of

the instanton on the D7-branes is the vev of the squark of the supersymmetric QCD.

Since the squarks are in the bi-fundamental representation of the color and the flavor

symmetries, their condensation gives a color-flavor locking. The squark condensation means

that the theory favors Higgs phase when the baryon chemical potential µ is larger than the

quark/squark mass m. We study the patterns of the symmetry breaking in section 4.3.

4.1 Additional Chern-Simons term

Using the backreacted supergravity solution (3.1), we obtain an additional Chern-Simons

term induced on the D7-branes. The general formula for the Chern-Simons couplings on

the D7-branes is

µ7 tr

∫
exp(2πα′F + B2) ∧

∑

q

Cq . (4.1)

Here the D7-brane RR charge is µ7 = 1
(2π)7α′4 , and the field strength 2πα′F now also

contains non-Abelian instanton piece. Formally expanding (4.1) out and performing inte-

gration by parts, for non-zero F
(3)
123 we obtain the explicit expression in components

SCS =
1

8(2π)4α′

∫
d4xF

(3)
123

∫
d4ξ tr

[
A0FijFklǫ

ijkl
]

+ · · · (4.2)

Here · · · means terms necessary to form a gauge-invariant CS 5-form

tr

[
AFF − 1

2
A3F +

1

10
A5

]
(4.3)

where the wedge product ∧ is omitted. The second and the third terms in the CS action

are irrelevant for our subsequent discussions. We substitute the constant F
(3)
123 from the

linearized supergravity backreaction (3.1) to extract the relevant term from SCS:

α′d
16πNc

∫
d4x

∫
d4ξ tr

[
A0FijFklǫ

ijkl
]
. (4.4)

This is the leading correction term due to the baryon density d. Note that the factor 1/Nc

in front of above shows that this is indeed a correction to the original D7-brane action.

This additional CS term has an important physical meaning. The essence here is quite

similar to the generation of the baryon charge in the Sakai-Sugimoto model [72], while the

use of the instantons here is quite different from there (c. f. footnote 6.). As discussed

in section 1, we are studying the process of moving one D3-brane from the origin onto

the worldvolume of the D7-branes. Once the single D3-brane goes outside the D5-brane

– 16 –



J
H
E
P
0
2
(
2
0
1
0
)
1
0
4

D7 D7

Baryon vertex

D3

Instanton

Figure 4. A schematic picture of the charge conservation process. In the left figure, Nc D3-branes

are sitting inside the baryon vertex (D5-brane wrapping S5). From the D3-branes, Nc units of RR

5-form flux emanates. The CS term on the D5-brane creates an electric charge on the worldvolume

of the D5-brane [7–11], and this generates electric field on the spiky D7-brane which touches the

D5-brane. In the right figure, we move one D3-brane toward outside of the baryon vertex. This

D3-brane becomes an instanton (shaded region on the D7-brane spike). The instanton is electrically

charged, so the total electric flux going to the asymptotic infinity of the D7-brane worldvolume is

conserved.

wrapping the S5, the RR 5-form flux penetrating the S5 worldvolume of the D5-branes

reduces by one unit. This 5-form was responsible for the CS term on the D5-branes to

produce the electric charges on the D5-branes, which are the end points of the fundamental

strings. So, by this moving process, the total number of the fundamental strings decreases

by a fraction of 1/Nc. Then, where does the baryon charge go off to? The answer is the

new CS term (4.2). Once the D3-brane gets on the D7-branes, it induces an instanton

charge. The instanton number for the single instanton is

tr

∫
d4ξ FijFklǫ

ijkl = 32π2. (4.5)

For a small size instanton, the CS term (4.2) effectively becomes proportional to

2πα′d
Nc

∫
d4xd4ξ trAt δ4(ξ) . (4.6)

This means that the instanton (which is the D3-brane dissolved into the D7-brane) carries

the electric charge (2πα′d)/Nc. Compared to this amount of the charge, the original

solution (2.12) shows that the spike has an electric charge 2πα′d. We can therefore conclude

that, pulling out one from the Nc D3-branes decreases the baryon charge by its fraction

1/Nc. This decrease is indeed offset by the instanton sourcing the electric field, so that

the asymptotic expression for the electric field doesn’t change. See figure 4 for a schematic

explanation of this charge conservation.
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4.2 Potential on the instanton moduli space

Finally we have collected all the pieces for computing the induced potential on the instanton

moduli space, and we will show that it drives the instanton(s) into dissolution. Here we

consider a simpler special case, where the BPST instanton profile is centered at the origin:

trFijFklǫ
ijkl =

192ρ4

(r̃2 + ρ2)4
. (4.7)

Note that the BPST instanton solution is obtained in the conformally flat r̃ coordinate, not

in the r coordinate. Upon substituting into the additional CS term (4.4), we can extract

the potential for the size ρ, VB(ρ), via the relation S = −
∫

d4xV (ρ) as

VB(ρ) = −12ρ4(2πα′d)

Nc

∫ ∞

r0

21/3

dr̃ At(r)
r̃3

(r̃2 + ρ2)4
. (4.8)

Again, note that the argument of the electric potential At is r which is related to r̃ by (2.32).

Integrating by parts (for the r̃ coordinate) and use (2.12), we obtain

VB(ρ) = −2πα′d
Nc

∫ ∞

0
dr A′

t(r)
ρ4(3r̃2 + ρ2)

(r̃2 + ρ2)3

= −2πα′d
NNc

∫ ∞

0
dr

d√
r6 + r6

0

ρ4(3r̃2(r) + ρ2)

(r̃2(r) + ρ2)3
. (4.9)

This (4.9) is indeed a monotonically decreasing function of ρ, when viewing together with

the coordinate redefinition (2.32). This can be easily understood if we notice following

three facts: (i) A′
t(r) is a monotonically decreasing function of r. (ii) The last factor

in the integrand of (4.9) is the instanton density function which is peaked at r̃ = 0 and

monotonically decreasing in r̃, while the width of the function is given by ρ and the function

has a normalized integral (which is the instanton number). (iii) The map (2.32) between r

and r̃ is a one-to-one and monotonic function. The instanton modulus potential V (ρ) (4.9)

shows that the system dynamically favors the Higgs phase, ρ 6= 0. This is the color-flavor

locking in the supersymmetric QCD.

The VB(ρ) from the CS term computation (4.9) does not appear to be analytically in-

tegrable, however to get a qualitative understanding we can consider the following asymp-

totic values:

VB(ρ = 0) = 0 , VB(ρ = ∞) = −2πα′d
Nc

∫ ∞

0
A′

tdr = −2πα′dµ

Nc
. (4.10)

Their difference,

VB(ρ = 0) − VB(ρ = ∞) =
2πα′dµ

Nc
(4.11)

is consistent with the interpretation that we pull out one quark per each baryon to the

infinity in the background chemical potential µ. However, note that the constant F
(3)
123 is

obtained only in the vicinity of r = 0. So, our calculation is strictly valid only for small ρ,
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Figure 5. The plot of VB(ρ)
|VB(∞)| versus ρ

r0
.

and the potential height (4.11) derived at large ρ should not be reliable. We however expect

that the qualitative physical result (4.11) is not modified significantly when we taken into

account of full F
(3)
123 at large radius. From the field theory point of view, this run-away

behaviour of the instanton size, or the Higgs VEV, to infinity suggests that the gauge group

is reduced from U(Nc) to U(Nc − 1). The detail analysis of the meson spectrum flow under

this transition can be found in [58]. For completeness, here we include the plot of the one

instanton size modulus potential, normalized by the asymptotic value VB(∞).

In the analysis above, we assumed that the center of the BPST instanton is at the

origin. However, we can consider a generic situation where the center of the instanton is

not at the origin r = 0. Suppose that the center is at some distance X from the origin. It

is clear that the similar expression to (4.9), which is again only valid at small r, would give

a qualitative result that the potential VB(ρ,X) goes to its minimum at (ρ,X) = (∞,finite)

or (ρ,X) = (finite,∞). The latter is in particular an extreme point in the moduli space in

the Coulomb phase. There ρ can vanish and in that case the color-flavor locking does not

occur. However, for X 6= 0, the original gauge group U(Nc) is explicitly broken, as it is in

the Coulomb phase.

Instead of substituting the BPST instanton, we can substitute multi-instanton solu-

tions. Suppose we treat Ñc instantons. We need to require Ñc ≪ Nc, because in the

perturbation of the backreaction the original background of AdS5 ×S5 should not be dras-

tically modified. Generically, the instantons are separated from each other.11 Our analysis

for the single BPST instanton holds also for the multi-instanton case. Then it is shown

that all the size moduli of the instantons are destabilized.

4.3 What is locked?

Naively speaking, the condensation of the squark field which comes from a fluctuation of

a string connecting the D3-branes and the D7-branes gives the instanton size. This string

transforms in the fundamental representation of the gauge group U(Ñc) and in the anti-

11Since electrically charged instantons should repel each other, generic configurations should be with

the separated instantons. This phenomenon is common with the interaction among baryons [71] in the

Sakai-Sugimoto model [72]; the repulsive core of nucleons is mainly due to this electric repulsion.
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fundamental representation of the flavor group12 U(Nf ). Here U(Ñc) is a part of the total

gauge group U(Nc) i.e. Ñc ≤ Nc. The partial color symmetry is for our convenience to

consider Ñc instantons only to dissolve into the worldvolume of the D7-branes. By the

squark condensation, apparently the color and the flavor symmetries U(Ñc) × U(Nf ) are

broken. We shall see the symmetry breaking pattern.

The theory on the instantonic D3-branes is constructed from their ADHM data [54–

56]. The ADHM data consists of four U(Ñc) adjoint scalar fields which are combined into

two Ñc × Ñc complex scalar fields B1 and B2, and the squark fields I† and J which are

complex Nf × Ñc matrix scalar fields. The squark fields transform as

I† 7→ UI†U−1
0 , J 7→ UJU−1

0 , (4.12)

where U ∈ U(Nf ) and U0 ∈ U(Ñc). So these fields are in the bi-fundamental representation.

Let us consider ’t Hooft instantons. Then B1 and B2 are diagonal matrices, and the

ADHM equations are nothing but the BPS equations for the theory on the D3-branes, are

II† = J†J , IJ = 0 . (4.13)

This of course allows a trivial solution I† = J = 0, which corresponds to the zero-

size instanton.

First we consider the two-flavor case Nf = 2. The flavor symmetry is U(2) which

is a vector part of the chiral symmetry (the chiral symmetry is explicitly broken by the

quark/squark mass in our case). The ’tHooft instanton whose centers are located at the

origin is represented by a solution

I† =

(
ρ1 ρ2 · · · ρÑc

0 0 · · · 0

)
, J =

(
0 0 · · · 0

ρ1 ρ2 · · · ρÑc

)
. (4.14)

Here, all ρi’s are real parameters. These correspond to size of each instanton. With this

at hand, we can compute unbroken symmetry.

For simplicity, we consider the case of a single instanton, Ñc = 1.

I† = ρ

(
1

0

)
, J = ρ

(
0

1

)
. (4.15)

Here ρ is a nonzero constant (for which we computed the potential). In this case, the

transformation which leaves I† intact is

U =

(
eiα1 0

0 eiα2

)
, U0 = eiα1 , αi ∈ R . (4.16)

On the other hand, the symmetry which leaves J intact is

U =

(
eiα1 0

0 eiα2

)
, U0 = eiα2 , αi ∈ R . (4.17)

12 Precisely speaking, the flavor group of the supersymmetric QCD should be SU(Nf ), since the overall

U(1) transformation of the flavor symmetry can be identified as a global part of a U(1) subgroup of the

local gauge group. In the following, we adopt U(Nf ) rather than SU(Nf ), but the argument goes similarly.
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Therefore, we need to require α1 = α2, and we conclude,

U(1)color × U(2)flavor → U(1)CFL . (4.18)

The global part of U(1)color is locked with the diagonal part of U(2)flavor, which is the

baryonic symmetry U(1)B , and the local part of U(1)color is broken.

This kind of the color-flavor locking can be found for general Nf . In the case of Ñc = 1,

the squark condensations are given by

I† = ρ




1

0

0
...

0




, J = ρ




0

1

0
...

0




. (4.19)

A similar analysis shows

U(1)color × U(Nf )flavor → U(1)CFL × U(Nf − 2)flavor . (4.20)

U(1)CFL is a global symmetry which locks a part of the flavor symmetry and the gauge

symmetry. Note that for Nf > 2, this U(1)CFL can be nothing to do with the baryonic

symmetry U(1)B , since the action of this U(1)CFL can be chosen as

U = diag(eiα, eiα, e−2iα/Nf , · · · , e−2iα/Nf ), U0 = eiα, α ∈ R . (4.21)

For generic Ñc, we expect that all the size moduli are driven to have nonzero values

(for example, for Nf = 2 we have (4.14)). So the symmetry is broken as

U(Ñc)color × U(Nf )flavor → U(1)CFL × U(Nf − 2)flavor . (4.22)

The locking is quite similar to the case of Ñc = 1. Note that we restrict ourselves to the case

of the ’tHooft instantons. Since the ’tHooft instantons do not cover all the moduli space of

the instantons, there remains a possibility that the unbroken symmetry, in particular the

part concerning the gauge symmetry, may be enhanced.

In the D-brane analysis, we used the technique for Coulomb branch in AdS/CFT

correspondence and treat one D3-brane as a probe by separating it from the rest, by hand.

This procedure for the separation is somewhat artificial, but it is required for the geometry

not to be drastically modified by a possible back reaction, which is our limitation.

5 Extension to finite temperature system

In this section we explore the system at finite temperature and baryon density. Since the

boundary geometry of our AdS5 × S5 is R1,3, the geometry creates a horizon inside AdS

at any finite temperature. N = 4 SYM theory coupled with N = 2 hypermultiplets in

fundamental representation at finite temperature has been studied (See [73] for a review).

As mentioned in section 1, there are two brane embeddings in the black hole background:
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the Minkowski embedding and the black hole embedding (figure 2). The former describes

the configuration of D-branes staying outside of the horizon everywhere and the latter

describes the configuration of D-branes falling into the black hole horizon. The equations

of motion and the free energy determine which configuration is realized at given quark

mass and baryon density normalized by temperature: m/T and 2πα′d/T 3.

In the case of zero baryon density and no instanton, the Minkowski embedding covers

only higher m/T region while the black hole embedding covers only lower m/T region [44,

45]. These two are connected by a first order phase transition at certain critical temperature

(m/T )crit.. This phase transition is interpreted in the field theory as meson melting: the

spectrum is discrete and the mesons are stable in the Minkowski embedding, while the

spectrum is continuous and the mesons are unstable in the black hole embedding. In the

case of finite baryon density, the Minkowski embedding is no longer physically allowed

and the black hole embedding covers the whole temperature region. When an instanton is

excited on the D7-branes at zero baryon density, the potential for the instanton size moduli

takes its minimum at the origin, ρ = 0, for the Minkowski embeddings and at some finite

value, ρ = ρmin > 0, for the black hole embeddings [62]. This means the system is in Higgs

phase above the critical temperature (m/T )crit.. Therefore, the system is already in a CFL

phase with the squark condensation, in the melted meson phase with finite T .

The purpose of this section is to study the case with both the finite baryon density

and the instanton configuration. As we saw in the zero temperature case, the backreaction

of the baryon density excites an additional CS term which induces the CFL. We will see

how this CS term affects the instanton potential in the finite temperature system.

5.1 The D3D7 system at finite baryon density and temperature

The background geometry dual to the finite temperature system is an AdS black hole.

In Poincare like coordinates, the metric, RR 4-form and the dilaton have the following

expressions, in the conventions of ref. [23, 24]:

ds2 =
1

2

u2

R2

(
−f2

f̃
dt2 + f̃dx2

3

)
+

R2

u2

(
du2 + u2ds2

5

)

C =
1

R4

(
u2

2
+

u4
0

2u2

)2

d4x , eΦ = eΦ0 , (5.1)

where

f = 1 − u4
0

u4
, f̃ = 1 +

u4
0

u4
, (5.2)

with u0 the location of the horizon. u and r6 in section 3 are related to each other by the

coordinate transformation

u2 = r2
6 +

√
r4
6 − u4

0 . (5.3)

The regularity of the Euclidean section of this geometry relates the horizon radius u0 and

the Hawking temperature, which is interpreted as a temperature of the boundary gauge

theory of our concern, as

T =
u0

πR2
. (5.4)
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As in the zero temperature case, we foliate S5 with S3 so that SO(3) R-symmetry

is manifest:

du2 + u2ds2
5 = du2 + u2(dθ2 + sin2 θds2

3 + cos2 θdφ2) , (5.5)

where θ, φ and θ1, θ2 in (3.8) are related through the following equations

sin θ = sin θ1 sin θ2 , tan φ =
cos θ1

sin θ1 cos θ2
. (5.6)

The probe D7-brane worldvolume is spanned by (t, xi, u, S3), and is localized in φ direction,

which we can use rotational symmetry to set φ = 0 (corresponding to θ1 = π
2 ). In the new

coordinates, the embedding is described by χ ≡ cos θ as a function of u. The Ub(1) gauge

field A dual to the baryon current on the boundary has only non-zero time component

A = At(u)dt. (5.7)

With these ansätze, the DBI action of the D7-branes is given by

SD7
DBI

V4
=

∫
du L

= −N
∫

du
u3f f̃(1 − χ2)

4

√

1 − χ2 + u2χ̇2 − (2πα′Ȧt)2
2f̃(1 − χ2)

f2
(5.8)

where the dot denotes d
du and N is as defined below (2.8). Since the action does not contain

A explicitly, the momentum conjugate of A is constant:

δL
δ(2πα′Ȧt)

= N u3

2

f̃2

f

(1 − χ2)2(2πα′Ȧt)√
1 − χ2 + u2χ̇2 − (2πα′Ȧt)2

2f̃(1−χ2)
f2

≡ D , (5.9)

or equivalently,

2πα′Ȧ = 2

(
D

N

)
f
√

1 − χ2 + u2χ̇2

√
f̃(1 − χ2)

√
u6f̃3(1 − χ2)3 + 8(D/N )2

. (5.10)

To derive the equation of motion for χ, we Legendre transform the action with respect to

D so that Ȧt can be eliminated from the action:

L̃ = L − δL

δ(2πα′Ȧt)
(2πα′Ȧt)

= −N
4

f√
f̃
√

1 − χ2

√
1 − χ2 + u2χ̇2

√
u6f̃3(1 − χ2)3 + 8(D/N )2 . (5.11)

Then the χ equation is

∂u

(
u5f f̃(1 − χ2)χ̇√
1 − χ2 + u2χ̇2

√
1 +

8(D/N )2

u6f̃3(1 − χ2)3

)

= − u3f f̃χ√
1 − χ2 + u2χ̇2

√
1 +

8(D/N )2

u6f̃3(1 − χ2)3

×
(

3(1 − χ2) + 2u2χ̇2 − 24

(
D

N

)2 1 − χ2 + u2χ̇2

u6f̃3(1 − χ2)3 + 8(D/N )2

)
. (5.12)
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As studied in ref. [74–76], the boundary condition of probe branes at the horizon is de-

termined by the regularity of the induced curvature: χ̇|u=u0
= 0. With this boundary

condition, the solution of this equation of motion near the horizon u ∼ u0 is then given by

χ = χ0 −
3χ0(1 − χ2

0)
3

4((D2/N 2u3
0) + 1 − χ6

0 − 3χ2
0(1 − χ2

0))

(
u

u0
−1

)2

+ O
((

u

u0
−1

)3
)

. (5.13)

Therefore, the embedding can be approximated as

χ = χ0, χ̇ = 0, (5.14)

for u
u0

− 1 smaller than 2√
3(1−χ2

0
)3/2

D

Nu
3/2

0

with large D.

We again consider the instanton excitations as a perturbation in this background field.

At the leading order of D/Nc, the instanton couples to RR 4-form and the induced metric,

and the relevant terms are:

SD7
DBI(FF ) = −NfTD7

∫
d4x

∫
u4

4R4
f f̃ · (2πα′)2

8
Tr[F ∧ F ] , (5.15)

SD7
CS(FF ) = NfTD7

∫
d4x

∫
u4

4R4
f̃2 · (2πα′)2

8
Tr[F ∧ F ] . (5.16)

The instanton F ∧ F lives on an effective four dimensional space whose metric is

G̃4
ij =

(
1

2

√
f f̃

)


1 − χ2 + u2χ̇2

1 − χ2
+

(2πα′)2Ȧ2

−1
2

f2

ef


 du2 + u2(1 − χ2)ds2

3




=

√
f f̃

2

((
1 +

u2χ̇2

1 − χ2

)
u6f̃3(1 − χ2)3

u6f̃3(1 − χ2)3 + 8(D/N )2
du2 + u2(1 − χ2)ds2

3

)
. (5.17)

Note that D dependence appears only through this metric. The difference between the

DBI term and the CS term is the factors of f and f̃ in the integrands. Therefore, the

instanton potential vanishes as long as the temperature is zero, even in the presence of

finite baryon density as we have seen.

5.2 CS term from backreaction

The next leading order in D/Nc comes from the backreaction of the gauge field to RR

fields. Similar calculations show that it excites the same constant RR 3-form field near the

horizon as that of the zero temperature case with d replaced by D,

F
(3)
123 =

8π3α′2D
Nc

. (5.18)

Therefore it induces the same CS term

SD7
CS(D) =

α′D
16πNc

∫
d4x

∫
tr [A ∧ F ∧ F ] . (5.19)
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The remaining issue is to obtain the explicit instanton configuration tr [F ∧ F ] on the

effective metric G̃
(4)
ij . As in the zero temperature case, we would like to obtain a conformally

flat coordinate ũ satisfying:

G̃
(4)
ij = S(ũ)2(dũ2 + ũ2ds3) . (5.20)

For the approximate embedding near the horizon (5.14), the conformally flat metric (5.20)

is obtained by

u2(1 − χ2
0)

√
f̃

√
u6f̃3(1 − χ2

0)
3 + 8(D/N )2

du =
dũ

ũ
. (5.21)

With this conformally flat coordinate, the BPST instanton is given by

tr [F ∧ F ] =
192ρ4

(ũ2 + ρ2)4
d4ξ̃ . (5.22)

As we have seen, there are three terms contributing the instanton potential for the

finite temperature case: the DBI and the CS term for thermal effect, which we denote VT ,

and the CS term from the backreaction, which we denoted earlier as VB. ¿From (5.15)

and (5.16), the thermal potential is

VT (ρ) = −(SD7
DBI(FF ) + SD7

CS(FF ))/V4

= − N
4R4

∫
dũ u4f̃(f̃ − f) · (2πα′)2

8

192ρ4ũ3

(ũ2 + ρ2)4
. (5.23)

This potential has a minimum at finite ρ since VT (0) = VT (∞) = 0. On the other hand,

from (5.19), the potential from the backreaction is

VB(ρ) = −SD7
CS(D)/V4

= − D2

NcN

∫

u=u0

du
2f√

f̃
√

u6f̃3(1 − χ2
0)

3 + 8(D/N )2

ρ4(3ũ2 + ρ2)

(ũ2 + ρ2)3
. (5.24)

The approximation we used to obtain the integrands breaks down for large u. In other

words, the instanton size cannot be much larger than the length scale specified by the “rigid

cone” approximation in order for our analysis here to make sense. However, in order to

see the presense of a phase transition, this approximation is enough. This is because, as we

will see (figure 6), around the phase transition temperature, the size of the instanton which

minimizes the energy (or at which some tachyonic modes appear) is almost equal to the size

of the horizon. Beyond the approximation, following two features may still hold: VB(0) = 0

and VB(∞) = − (2πα′)Dµ
Nc

. The first one, VB(0) = 0, comes from the fact that the integration

of the instanton term, the last term in (5.24), is zero for ρ = 0. Therefore, independent of

the form of F3 and Ȧt, the integration gives zero. The second one, VB(∞) = − (2πα′)Dµ
Nc

,

comes from the physical reason explained in section 4.2 for the zero temperature case. A

numerical analysis suggests that VB monotonically decreases from zero to − (2πα′)Dµ
Nc

.
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Figure 6. The plot of V (ρ)
|V (∞)| versus ρ

r0

for χ0 =
√

3
2 . The three lines, from bottom to top,

correspond to
g3/4

s D

Nu3

0

=0.4, 0.8, and 10 respectively. We can see that for when the baryon density

is small compared to the temperature, the thermal potential VT dominates and the potential has a

local stable minimum. As the baryon density is increased, the relative contribution of VB becomes

larger and eventually the potential becomes the run-away type.

The shape of the total potential V = VT +VB then depends on the ratio between them,

which is characterized by

VB

VT
∼ gs

12π

1

u4
0

(
D

N

) 4

3

. (5.25)

Physically, this suggests that the thermal effect dominates when the temperature is high

(large u0), while the backreaction effect dominates when the baryon density is high (large

D).13 Note that (D/N ) can be large up to the order of (Nc/Nf ) where the probe flavor

brane description breaks down. Therefore, the ratio (VB/VT ) may become large despite

the fact that it is a positive power of gs. Recalling that VT has a local stable minimum and

VB is a run-away type potential, we conclude that the potential can have three possible

behaviors depending on the ratio between D and u0. When ((D/N )4/3/u4
0) is very small,

VT dominates the potential and it has a local stable minimum. The size of the instanton in

this case is about the order of the horizon scale. Since observables which have less energy

than the temperature have no meaning at finite temperature, the finiteness of the instanton

size may be interpreted as a thermal effect. As ((D/N )4/3/u4
0) increases, the local min-

imum becomes a meta-stable state and the instanton size ρ eventually decays to infinity.

As ((D/N )4/3/u4
0) increases further, VB dominates the potential and the local minimum

disappears. These features are shown in figure 6. Thermal quantities such as the deriva-

tive of the free energy may change discontinuously at a critical value of ((D/N )4/3/u4
0).

Therefore, this shows a phase transition within the CFL phase. For larger temperature, we

have a CFL phase with the finite size instanton, while for larger baryon density, we have

another CFL phase with the size of the instanton being very large. In the large instanton

limit or equivalently the large Higgs VEV limit, the gauge group of the theory effectively

shifts from U(Nc) to U(Nc − 1) [58]. A schematic picture of the phase diagram is shown

in figure 3.

13 Note that both potentials are of O(1/Nc) for fixed gs (∼ fixed ratio of λ/Nc).
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Before finishing this section, we give a few comments on the interpretation of the

potential. From the boundary theory point of view, the stability at higher temperature

may be understood as the thermal masses of the scalar fields and the instability at higher

density may be understood as the tachyonic masses of the scalar fields from the chemical

potential. Since the supersymmetry is completely broken, the potential might be lifted up

by cubic and higher terms and the vevs of the squarks may take finite values. Of course,

these expectations are from the weak coupling analysis of the gauge theory and the strong

coupling dynamics might change the picture. We do not go into the detail on this point in

this paper.

6 Discussions

In this paper, we made some preliminary steps towards a holographic model of color-

flavor locking phase, here we end with a list of interesting future directions which seem

worth exploring.

The phase diagram (figure 3) is obtained by the total potential VT +VB for the instanton

size modulus, but the potential VB is valid only for a restricted region for r, as shown in

section A. So, it is important to compute the backreaction which is valid in all region of

r, to explore the phase diagram further.

In particular for T = 0, we have shown that there is an instability along the direction

of squark VEV in the melted meson phase. This means that the critical chemical potential

dividing the meson and melted meson phases may take a different value which is smaller

than µ = m. Our method of treating Ñc D3-branes among Nc of them separately cannot

reach the true value of the critical chemical potential in the full phase diagram, and this

deserves a further study. It is possible that there may be no vacuum if the potential valid

for all r is found and turns out to be a run-away type. See [77] for a related discussion for

R-charge chemical potential.

A related issue is a possible distinction between the two CFL Higgs phases. We have

two CFL phases, one is with finite instanton size ρ while the other is with ρ = ∞. The

former is realized mainly by the thermal potential for ρ, while the latter is by a domination

of the baryon density. The symmetry breaking patterns look similar to each other. How-

ever, we expect that, once the repulsion among electrically charged instantons is included,

the remaining symmetries may differ. In addition, physical solitonic spectra in these CFL

vacua may be different from each other. It would be interesting to study vortex strings in

these vacua.

The vortex strings in the CFL phase in QCD play important roles in various physics

(see ref. [78–89] for a partial list of related papers), and the D-brane techniques for the

CFL phase studied in this paper may be helpful in revealing the properties of those vortex

strings. Since the vortex strings are inside the D3-branes which are instantons on the D7-

branes, this suggests that “vortices inside instantons” are possible. This is intriguing on

its own in soliton physics.

It was described in ref. [90] that in an idealistic situation the CFL phase of QCD

may be continuously connected to the hadron phase, giving a continuous deformation of
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the excitation spectrum, named “quark-hadron continuity”. In our case, the dynamically

favored CFL phase is in the melted meson phase, so the fluctuation spectrum is continuous,

which means that the spectral “continuity” doesn’t make much sense. However, in our

N = 4 YM theory coupled to the N = 2 quark hypermultiplet, it is known that the meson

phase is continuously connected to a Higgs phase [57]. This marginal deformation does

not cost any energy, and the baryon number density is kept to be zero. The instanton size

modulus is a free parameter (that is, the squark VEV is a flat direction of the theory).

In this deformation, it was shown in ref. [58] that the discrete fluctuation spectrum is

smoothly deformed. See figure 1 of ref. [58]. This phenomenon is analogous to the spectral

quark-hadron continuity.

It is well-known that color-flavor locking phase in QCD closely resembles the locking

between spin and orbital symmetries found in the so-called “B-phase” of superfluid Helium

3, the setup we consider here therefore seems to be directly applicable in realizing this

in string theory. One can study various thermodynamical properites and also consider

topological defects e.g. vortices and study in such phase. Some interesting work relating

D3D7 system with fermi-liquid can be found in refs. [91, 92].

Finally, it would be interesting to study a possible universality of the CFL at finite

baryon density among holographic models. In the D4/D6 system considered in ref. [53], the

dual field theory becomes effectively a pure bosonic Yang-Mills theory at low energy [93].

The phase structure of this system at finite temperature and baryon density was shown to

have universal properties in ref. [64]. Therefore, it is expected that when the baryon number

density increases, the system becomes unstable and some of the D4-branes would be pulled

onto the D6 branes. In this case, the squarks condensation corresponds to an expansion

of monopoles on the D6-branes, instead of the instantons. As mentioned in section 3.1, in

the deconfinement phase, the baryon vertex is replaced by a flux while there is no probe

brane description [65]. On the other hand, in a confining phase, the baryon vertex does

have a probe brane description, and the discussion in section 3.1 at zero temperature does

not apply to the case. Therefore, it would be interesting to investigate the possibility of

CFL in a confinement phase.
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A Check of consistency for the linearized perturbation

To complete the analysis of section 3.2, we shall now check if this can be regarded as a

small backreaction, so that our perturbative treatment for solving the equations of motion

of the supergravity is guaranteed. The second term of (3.13) suggests that the nonzero

F3 (3.1) will again backreact the F5 flux. We examine that this backreaction does not spoil

the original flux configuration (2.3) too much. To this end, we compare the second term

of (3.13) with the F5 kinetic term

−1

8κ2
10

∫
d10x

√−g10|F5|2. (A.1)

We are only interested in order of magnitudes. Solving (3.17), we obtain

B0r6
∼ r−3

6 g2
sα

′4d . (A.2)

Using this and (3.1) (2.3), we evaluate the second term of (3.13) as

1

4κ2
10

∫
F5 ∧ B2 ∧ F3 ∼

∫
d4xdr6dΩ5 r−3

6 g2
sα

′4d2 . (A.3)

On the other hand, the F5 kinetic term (A.1) with the flux solution (2.3) gives

−1

8κ2
10

∫
d10x

√−g10|F5|2 ∼
∫

d4xdr6dΩ5 r3
6g

−2
s α′−4 . (A.4)

Requiring (A.3) being much smaller than (A.4), we obtain

g4
sα

′8d2 ≪ r6
6 . (A.5)

This means that, for the backreaction to the 5-form flux F5 to be small, we need to work

in this region for r6.

On the other hand, we made the assumption r ≪ r0 to simplify the source term to

get (3.12). Around the tip, we have a relation r2
6 = r2 + y(r)2 ∼ r2(1 + y′(0)), so this

assupmtion translates to the condition r2
6(d

2 − c2)/d2 ≪ r2
0 which is equivalent to

r6
6 ≪ α′8g2

sN
−2
f d6/(d2 − c2)2 . (A.6)

Therefore, in order to have a region for r6 which satisfies the two requirements (A.5)

and (A.6), we need

gsNf ≪ d2/(d2 − c2) . (A.7)
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With (2.16) and (2.17), this condition is met if we are close to the critical chemical potential,

µ − m ≪ µ ,m . (A.8)

Throughout this paper, we are working in this regime.

Note that when d2−c2 ≪ d2 with which (A.7) is satisfied, the D7-brane spike becomes

very narrow, and the spike can be well-approximated by fundamental strings.14

This means that dilaton backreaction can be safely neglected. The backreaction to the

metric is suppressed by 1/Nc and also neglected.
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