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supertube can store parametrically more entropy than in flat space, confirming the entropy

enhancement mechanism that was predicted using brane probes. We also show that all the
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action of an appropriate brane probe. In particular, the supergravity and the DBI analysis

yield identical functional bubble equations that govern the relative locations of the centers.

This indicates that there is a non-renormalization theorem that protects these functional

equations as one moves in moduli space. Our construction creates configurations that are

beyond the scope of recent arguments that appear to put strong limits on the entropy that

can be found in smooth supergravity solutions.
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1 Introduction

One of the key aspects to understanding black holes within string theory involves deter-

mining the families of supergravity solutions that have a given set of charges and angular

momenta, and examining the relationship between the number of these solutions and the

Bekenstein-Hawking entropy of a black hole with identical charges and angular momenta.

The interest in this question is spurred by the desire to establish if, and in what

form, the so-called fuzzball proposal (see [1–5] for reviews) applies to BPS black holes.

This proposal requires that, within string theory, there should exist a huge number of

horizonless configurations with unitary scattering, that have the same mass, charges and

angular momenta as a black hole, and that start differing from each other at the location

of the would-be black hole horizon. Furthermore, the number of such configurations should

reproduce the Bekenstein-Hawking entropy of the black hole. If enough such configurations

exist, then the AdS-CFT correspondence would strongly suggest that the classical black

hole solution only gives a thermodynamic approximation of the physics that is correct at

scales larger than the horizon scale, but does not correctly describe the physics at the

horizon, much as the thermodynamic description of a gas breaks down at scales smaller

than the mean free path.

The construction and investigation of black hole microstate configurations that has

been going on over the past few years has yielded several interesting pieces of information.

First, there is a very interesting geometric transition that takes the original black-hole or

black-ring geometry over to a huge moduli space of smooth, horizonless bubbled geome-

tries [2, 6, 7]. Amongst such bubbled geometries there exist a very large number of smooth

horizonless solutions that have the same charges and angular momenta as a BPS black

hole with a macroscopically-large horizon area, both in five and in four dimensions [8–10].

Furthermore, these solutions can have a very long throat, and one can argue [8, 11] that

they should be dual to CFT states that live in the same CFT “typical” sector as the states

that give rise to the Bekenstein-Hawking entropy of the black hole.

For practical, computational reasons it is easiest to study the microstate solutions that

have a Gibbons-Hawking (GH) base space and thus descend to multi-center solutions in

four dimensions [12, 13]. There are very large families of such solutions, however the semi-

classical quantization of the moduli space shows that these solutions give an entropy that is

parametrically smaller than the entropy of a black hole with the same charges [11, 14]. This

is to be expected, and indeed was anticipated in the earlier, very limited estimates of [8]:

One cannot hope that counting only microstates that have a large amount of symmetry

could reproduce the entropy of a given system. The simple bubbled solutions in five

dimensions have the symmetries of the compactification torus as well as a tri-holomorphic

U(1) isometry along the Gibbons-Hawking (GH) fiber. From such a class of solutions

one cannot even reproduce the entropy of the two-charge D1-D5 system, which is known

to come from smooth horizonless solutions [15–17]. The entropy of supergravity U(1)-

invariant solutions was also matched against the entropy of a weakly coupled graviton gas

in AdS3 × S2 in [14]. While this entropy is not restricted to U(1)-invariant configurations,

it is intrinsically perturbative, and cannot capture the supertubes we consider here; in the
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D1-D5-P frame our configurations give rise to a non-trivial topology, and in other frames

have dipole charges corresponding to non-perturbative brane configurations.

To some extent, the amazing part of U(1)-invariant bubbling geometries and of four-

dimensional multi-center solutions is not the fact that there are so few microstates with a

set of isometries (in the D1-D5 system there is only one such microstate), but that there are

so many. The importance of the bubbled GH geometries is not so much in the large number

of highly symmetric solutions but in the fact that they come from a geometric transition

of branes in flat space, and this transition opens up vast new families of solutions in which

the bubbles of these geometries change shape, or “wiggle,” in ways that break the original

isometries and depend upon internal dimensions that were previously frozen out of the

dynamics. It is one of the primary purposes of this paper to find classes of such wiggling

solutions that depend upon arbitrary functions.

We therefore expect that, in the vicinity of the highly symmetric solutions counted

in [11, 14], there will be many smooth solutions that do not preserve the isometries. Indeed,

the simplest class of such solutions can be obtained by putting BPS supertubes of arbitrary

shape [18] in one of the bubbling microstate solutions [19]. Through spectral flow one can

then think of these solutions as fluctuating bubble geometries [20, 21]. These solutions

depend on several continuous functions, and hence have an infinite-dimensional moduli

space, of which the finite-dimensional moduli space counted in [11, 14] is a very small,

discrete subset. If one naively counts these fluctuating solutions, ignoring the back-reaction

of the supertubes1, the entropy one obtains from such a calculation is infinite [25]. However,

if one assumes that the length of the throat in which the supertube sits caps off to the

value expected from the dual CFT to correspond to the typical black hole microstates, the

entropy of these supertube can potentially have the same growth with the charges as the

entropy of a black hole [25].

It is also worth noting that the technique of using wiggling supertubes to create fluc-

tuating bubbled geometries is a convenient mathematical device for creating an explicit,

though rather restricted class of such fluctuating geometries. There are, of course, con-

siderably more general classes of BPS fluctuating geometries, and conceivably there might

even be BPS classes that involve fluctuating, regular surfaces with arbitrary functions of

two variables or non-geometric backgrounds [26].

Returning to fluctuating geometries created by wiggling supertubes, it would be clearly

interesting to use the technology developed in [11, 14], as well as earlier technology de-

veloped in [27–29] to count the back-reacted wiggly supertube solutions in its infinite-

dimensional moduli space (as was done for two-charge supertubes in flat space in [29]).

Given that the back-reaction of both the supertubes in flat space [15–17] and the ones in

more complicated three-charge backgrounds [19] is expected to lead to smooth supergravity

solutions2, if the entropy one finds this way is black-hole-like then this would go a long way

toward establishing the validity of the fuzzball proposal for extremal BPS black holes.

1Much in the same spirit as counting the D4-D0 black hole entropy in the regime of parameters where

the D0’s can be treated as probes [22–24].
2These solutions are smooth only in the duality frame in which the supertubes have dipole charge

corresponding to KK monopoles, but not in other duality frames [15–17, 19, 30].
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We have several goals in writing this paper. We begin by outlining a procedure by which

one can construct explicit supergravity solutions that contain wiggly supertubes, and that

depend on arbitrary functions. Even if all such solutions can be formally written down

using Green functions [31], constructing them explicitly is not straightforward because

one needs both scalar and vector Green functions in multi-center Taub-NUT. The scalar

ones were constructed by Page for a regular multi-center Taub-NUT space [32], but the

vector ones are not known. An upcoming paper contains the construction of these Green

functions, which are much more involved than the scalar ones. Even if one could write

implicitly a full wiggly-supertube solution in this way, one cannot integrate explicitly the

Green functions around an arbitrarily-shaped supertube profile. We therefore focus on a

sub-class of wiggly supertubes where the supertube shape remains round, but the charge

densities inside the supertube world-volume fluctuate. As we will show in section 2, this

class of solutions is parametrized by one arbitrary continuous function. Since the supertube

shape is unchanged, the dipole magnetic fields of these solutions are exactly the same as

those of the solution with a tri-holomorphic U(1) invariance. All of this makes it just

possible to construct explicitly the fully back-reacted solution. It is thus our primary goal

here to construct such a fully back-reacted wiggly solution.

Constructing a wiggling supertube with one arbitrary function is obviously far less

general than exciting all possible shape (and fermionic) modes. On the other hand, if the

combined shape and fermionic modes of supertubes can capture the entropy of a black

hole of finite horizon area, the number of arbitrary functions should then represent the

central charge of the underlying field theory. Hence, one arbitrary function should be

sufficient to capture the growth of the entropy of supergravity solutions as a function of

the charges. The overall constant of proportionality can then be trivially restored. Hence

the construction of explicit fluctuating geometries that depend on one arbitrary function

is extremely important, because it can be used to capture the contribution to the entropy

of the most general class of supertube fluctuations.

A number of important mathematical and physical issues arise out of the construction

of fully-back reacted solutions for wiggly supertubes and these lead to the other important

results of this paper.

First, if one wants to construct solutions that have the same charges as a black hole with

a macroscopically-large horizon area and that have a hope via the entropy enhancement

phenomenon to describe the entropy of this black hole, one must use ambipolar Taub-NUT

or Gibbons-Hawking base spaces, whose signature is both (+,+,+,+) and (−,−,−,−).

The five-dimensional solutions constructed using such apparently pathological base-spaces

were shown in [6, 7, 33, 34] to actually be smooth and horizonless. However, in order to

construct wiggly supertube solutions one needs to know the scalar Green functions on these

base spaces.

Since ambipolar base spaces have a very significant apparent pathology, finding the

physically-correct Green function is rather subtle. For example, one expects a Green func-

tion to diverge precisely when the distance between the source and the field point goes to

zero but in an ambipolar space the vanishing of the distance function from a given point in

the (−,−,−,−) region defines a codimension-one “image” hypersurface in the (+,+,+,+)
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region. However, in the fully back-reacted solution this point is at a finite distance from this

zero-distance “image” hypersurface, and hence the Green function should not diverge there.

There are several ways in which one can try to find the proper Green function. The

most obvious is to analytically continue the Green function on a regular Taub-NUT space

first constructed by Page in [32] (which we call from now on the Page Green function). As

one might expect, such continuations are bedeviled by the “image surface” problem and, as

we will show in section 3, this procedure gives a Green function that solves the correct equa-

tions but diverges for non-coincident points. One can similarly try to use parts of the Page

Green function and recombine them in such a way as to obtain a physical Green function,

but the obvious procedures do not work either. The “best” Green function that we could

construct using this direct method has cusps at non-coincident points, and at first investi-

gation does not appear to be good-enough for our purposes. It would be interesting to see

whether a better-behaved Green function for ambipolar spaces can be constructed directly.

The only effective strategy so far for constructing the requisite Green function on

ambipolar spaces is to use the fact that the five-dimensional, Lorentzian geometry is regular,

construct a Green function in five dimensions and then reduce it to the proper ambipolar

Green function by descending to the base in four dimensions. As we will see in section 3,

this indirect method has the advantage of yielding the physical Green function, but has the

disadvantage of being technically challenging for even the simplest of ambipolar spaces. We

show how to use this method to construct the Green function for an ambipolar Gibbons-

Hawking space with harmonic function 1
|~r+~a| − 1

|~r−~a| starting from the five-dimensional

Green function on global AdS3 × S2. We also compare this physical Green function to the

possible extensions of the Page Green function, and explore the parallels and differences

between the various Green functions. It is to be hoped that there might be a systematic

procedure for adapting the Page Green function to obtain the physical Green function in

general, but the complexity of the differences make this a challenging task. On the other

hand, as we will describe below, we will learn from the one explicit Green function that

we can construct that almost all of the essential physics can be extracted via careful use

of probe solutions.

Having obtained the Green function for the two-center, zero-charge Gibbons Hawking

space, in section 4 we construct the fully-back-reacted supergravity solutions corresponding

to wiggly supertubes in that space. It should also be noted that a family of wiggling super-

tubes carrying three charges was obtained in [20] in a flat-space background. Here, by work-

ing in an ambipolar background we find three-charge solutions that form the largest known

family of black-hole microstate solutions, parameterized by an arbitrary continuous func-

tion, and thus having an infinite-dimensional moduli space. We also analyze the conditions

that these solutions must satisfy in order to be smooth and free of closed timelike curves.

From our explicit solution for the wiggling supertube, we obtain the bubble, or inte-

grability, equations that relate fluctuating charge densities and determine the location of

the wiggly supertube. When the supertube does not wiggle, the solution can be reduced

to a three-center solution in four dimensions, and the inter-center positions must satisfy

some rather simple bubble equations. If the supertube changes shape, then it generically
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does not correspond to a point in the R
3 base of the Gibbons-Hawking space, and hence

the regularity conditions will become more complicated than the simple bubble equations.

Nevertheless, if the supertube is round and its wiggles come solely from the density modes,

its location is still a point in the R
3 base, and one can still write bubble equations. These

equations are functionals of the density modes of the supertube and we will see how the

ambipolar Greens functions simplify at Gibbons Hawking points and thus lead to relatively

straightforward bubble equations on ambipolar bases.

Having obtained these “bubble functional equations” using supergravity and our new

Green function, we investigate, in section 5, the extent to which one can obtain the same

physical data by studying the Born-Infeld action of a supertube in this space, much as one

did for round supertubes. As a probe, the Born-Infeld dynamics of the supertube is sensi-

tive only to the physics in its vicinity, and hence will only yield the bubble equation for the

supertube point. However, one can use the fact that the bubble equations contain only pair-

wise interactions between various centers to fish out, from the supertube bubble equations,

the various parts of the bubble equations for the other points. This procedure actually

yields all the bubble functional equations simply from the supertube Born-Infeld action.

Remarkably, the two sets of functional equations agree with each other, despite being

obtained by very different procedures: one set is obtained by going through a very technical

construction of a physical Green function on an ambipolar space, then plugging these Green

functions in the supergravity equations and demanding no closed timelike curves, while the

other set is obtained by extracting and rearranging terms in the Born-Infeld action of a

probe wiggly supertube. The fact that the bubble functional equations obtained in these

two different regimes of parameters agree, points to the existence of a non-renormalization

theorem similar to that which protects the bubble equations for U(1) invariant multi-center

solutions3. This non-renormalization theorem was very useful for finding the symplectic

form of and quantizing the U(1)-invariant multi-center solution in [11, 14], and we be-

lieve it will prove equally useful in quantizing the infinite-dimensional moduli space of the

supergravity solutions we are constructing here.

In section 6 we return to the full supergravity solution to analyze and estimate the

entropy that can be stored in the fully back-reacted supertube. In [25] this entropy was

estimated using the Born-Infeld action of the supertube (using the technology of [35, 36]),

and was found to be much larger than that of supertubes in flat space. Indeed, the charges

that control this entropy are not the electric charges of the supertubes, but some effective

charges that are the sum of the electric charges of the supertube and of a contribution

coming from the magnetic fluxes of the background. Hence, even a small supertube, when

placed in a background with large magnetic fields can have a considerable entropy. The

analysis in [25] involved probes and so did not include the back-reaction and it was found

that the entropy of a supertube placed in scaling solution can grow arbitrarily large with

increasing the depth of the scaling solution. The technology developed in this paper allows

us to construct a fully-back-reacted example of this entropy enhancement mechanism, and

3We would like to remind the reader that these equations can be obtained both at weak effective coupling

using quiver quantum mechanics and at strong effective coupling using the fully back-reacted supergravity

solution, and their form is the same [12, 13].
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to estimate exactly how much entropy can a supertube carry. We find that this entropy is to

leading order independent on the electric charges of the supertube, and only depends on its

magnetic dipole charge and on the charges and fluxes of the background. This shows that

entropy enhancement is indeed a real physical feature of the complete microstate geometry.

To summarize, in section 2 we present our methodology for obtaining fully-back-reacted

solutions that depend on one arbitrary continuous function. In section 3 we explore several

possibilities for constructing Green functions for ambipolar spaces, and find the physical

Green function for an ambipolar Gibbons-Hawking space with two centers of opposite

charge. In section 4 we use this Green function to construct the fully back-reacted solution

corresponding to wiggly supertubes in this space,and find the functional bubble equations

satisfied by the positions of the supertube and GH centers. In section 5 we present a way

to extract these equations from the Born-Infeld action of the wiggly supertube, and find

that the two sets of functional equations agree. In section 6 we use our results to show

that the entropy of a supertube inside a bubbling solution depends on the charges of the

background and not on its explicit charges, and thus establish the existence of the entropy

enhancement mechanism proposed in [25]. We conclude in section 7. Appendix A contains

some more details of the Green function constructed in section 3.

2 The general back-reacted solution with fluctuating electric charge den-

sities

Three-charge solutions with four supercharges are most simply written in the M-theory

duality frame in which the three charges are treated most symmetrically and correspond

to three types of M2 branes wrapping three T 2’s inside T 6 [31, 37]. The metric is:

ds211 = − (Z1Z2Z3)
− 2

3 (dt + k)2 + (Z1Z2Z3)
1

3 ds24

+
(
Z2Z3Z

−2
1

) 1

3 (dx2
5 + dx2

6) +
(
Z1Z3Z

−2
2

) 1

3 (dx2
7 + dx2

8) +
(
Z1Z2Z

−2
3

) 1

3 (dx2
9 + dx2

10) ,

(2.1)

where ds24 is a four-dimensional hyper-Kähler metric [31, 37–39] 4. If one imposes in

addition an extra triholomorphic U(1) isometry, this space has to be a Gibbons-Hawking

(GH) space [40]:

ds24 = V −1(dψ +A)2 + V ds23 (2.2)

with ds23 the flat three-dimensional metric and ~∇V = ~∇× ~A.

The solution has a non-trivial three-form potential, sourced both by the M2 branes

(electrically) and by the M5 dipole branes (magnetically):

A = A(1) ∧ dx5 ∧ dx6 +A(2) ∧ dx7 ∧ dx8 +A(3) ∧ dx9 ∧ dx10. (2.3)

The magnetic contributions can be separated from the electric ones by defining the “mag-

netic field strengths:”

Θ(I) ≡ dA(I) + d

(
(dt + k)

ZI

)
, I = 1, 2, 3. (2.4)

4This metric can have regions of signature +4 and signature −4 [6, 7, 33, 34], and for this reason we

usually refer to it as ambipolar.
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Finding supersymmetric supergravity solutions for bubbles geometries reduces to solving

the following system of BPS equations on the GH base [31]:

Θ(I) = ⋆4Θ
(I) ,

2ZI =
1

2
CIJK ⋆4 (Θ(J) ∧ Θ(K)) , (2.5)

dk + ⋆4dk = ZIΘ
I .

In these equations, ⋆4 is the Hodge dual in the four-dimensional base space and CIJK =

|ǫIJK |. The operator, 2, is the Laplacian in the four-dimensional metric.

Our purpose is to solve this in a similar manner to that described in [31], except that

we want to allow varying electric charge densities. We will also later focus on three-charge

geometries containing supertubes and so we will work in the D1-D5-P duality frame (where

supertubes source smooth solutions). In this frame, the metric takes the form:

ds2IIB = − 1

Z3

√
Z1Z2

(dt + k)2 +
√
Z1Z2 ds

2
4 +

Z3√
Z1Z2

(dz +A(3))2 (2.6)

+

√
Z1

Z2
(dx2

5 + dx2
6 + dx2

7 + dx2
8) , (2.7)

where ds24 is still the metric of the GH base. In the M-theory frame, the electromagnetic

fields all appear in the 3-form Maxwell potential (2.3) while in the IIB D1-D5-P frame one

of these fields has become part of the metric (2.7).

The first step is to solve the first BPS equation in exactly the same manner as for GH

base spaces, [2, 6, 7, 41] and for this it is convenient to introduce the vielbeins:

ê1 = V − 1

2 (dψ + A) , êa+1 = V
1

2 dya , a = 1, 2, 3 , (2.8)

and the two-forms:

Ω
(a)
± ≡ ê1 ∧ êa+1 ± 1

2
ǫabc ê

b+1 ∧ êc+1 , a = 1, 2, 3 . (2.9)

One then takes

Θ(I) = −
3∑

a=1

(
∂a
(
V −1KI

))
Ω

(a)
+ , (2.10)

for some harmonic functions, KI , on the R
3 base of the GH space. We specifically require

the magnetic fluxes to be independent of ψ. These field strengths have potentials:

B(I) = V −1KI (dψ +A) + ~ξ(I) · d~y , ~∇× ~ξ(I) ≡ − ~∇KI , (2.11)

where Θ(I) = dB(I).

The source of the second BPS equation is independent of ψ and so the inhomogeneous

solutions for the functions ZI follow the standard form:

ZI =
1

2
CIJKV

−1KJKK + LI , (2.12)
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and the functions LI are still required to be harmonic but are now going to be allowed to

depend upon all variables including the fiber. Thus we have

2LI = 0 . (2.13)

As before, there is a natural Ansatz for the angular momentum one-form k:

k = µ(dψ +A) + ~ω · d~y . (2.14)

The third BPS equation then reduces to:

(µ~∇V − V ~∇µ) + V
[
∂ψ~ω + ~A∂ψµ

]
+ ~∇× ~ω + (∂ψ~ω × ~A)

= −V
3∑

I=1

ZI ~∇
(
V −1KI

)
, (2.15)

where ~A is the vector field in the fibration of the GH metric and satisfies ~∇× ~A = ~∇V .

If one defines the covariant derivative:

~D ≡ ~∇ − ~A∂ψ , (2.16)

then one can write (2.15) as

(µ~DV − V ~Dµ) + ~D × ~ω + V ∂ψ~ω = − V
3∑

I=1

ZI ~∇
(
V −1KI

)
. (2.17)

Moreover, the four-dimensional Laplacian can be written:

2F = V −1
[
V 2 ∂2

ψF + ~D · ~DF
]
. (2.18)

The third BPS equation has a gauge invariance: k → k + df and this reduces to:

µ→ µ + ∂ψf , ~ω → ~ω + ~Df , (2.19)

The Lorentz gauge-fixing condition, d ⋆4 k = 0, reduces to

V 2 ∂ψµ + ~D · ~ω = 0 , (2.20)

and we will adopt this gauge throughout.

Now take the covariant divergence, using ~D, of (2.17) and use the Lorentz gauge choice,

and one obtains:

V
2

2µ = ~D ·
(
V

3∑

I=1

ZI ~D
(
V −1KI

))
. (2.21)

Remarkably enough, this equation is still solved by:

µ =
1

6
V −2CIJKK

IKJKK +
1

2
V −1KILI + M , (2.22)
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where, once again, M is a harmonic function in four dimensions. Finally, we can use this

solution back in (2.17) to simplify the right-hand side to obtain:

~D × ~ω + V ∂ψ~ω = V ~DM −M ~DV +
1

2

(
KI ~DLI − LI ~DKI

)
. (2.23)

Once again one sees the emergence of the familiar symplectic form on the right-hand side

of this equation. One can also verify that the covariant divergence (using ~D) generates an

identity that is trivially satisfied as a consequence of ~∇V = ~∇× ~A, (2.20), (2.22) and

2LI = 2M = 0 . (2.24)

While it might be possible to find, we do not have an explicit closed form for ~ω, but we

will not need it.

We have thus generalized the results of [6, 7, 39, 41] to completely general, fluctuating

electric charge densities.

3 Scalar Green functions on a GH space

In order to solve (2.24) for varying charge densities, one needs the scalar Green function

on a GH space. When the GH space is a regular Euclidean space (the function V is

everywhere positive), the Green function is well-known [32]. However, as we explained in

the Introduction, when the GH space is ambipolar finding the Green function is not so

straightforward, and the simple analytic continuation of the Green function on a regular

GH space does not produce a physical ambipolar Green function. We therefore turn to an

indirect method for constructing this Green function: we first construct the Green function

for a five-dimensional solution that has an ambipolar base space: AdS3 × S2, and then we

reduce this Green function.

This section reviews some of the known material about Green functions on GH spaces

and the relationship between AdS3×S3 and an ambipolar two-centered GH space. Much of

the rest of this section contains the (highly technical) derivation of the Green function that

we will subsequently use. Those who wish to skip most the technical details can get a good

idea of the general strategy from section 3.3. The key physical results that we will need

about the Green function are contained in section 3.7, which discusses the behavior of the

Green function in various limits. In particular, section 3.7.2 contains the essential result

that demonstrates that the bubble equations at the GH fibers (but not at the supertube

itself) are unchanged by the fluctuations and only depend upon the total charge of the

fluctuating component.

3.1 Review of known Green functions on regular GH spaces

The Green function on a positive definite, multi-center Taub-NUT space have been known

for some time. Consider the metric (2.2) with V harmonic and everywhere positive:

V =
∑

n

qn
|~x− ~xn|

, (3.1)
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with qn ≥ 0. The Green function was found by Page in [32], and is given by:

G(ψ, ~x;ψ′, ~x′) =
1

16π2∆

sinhU

coshU − cosT
, (3.2)

where

∆ ≡ |~x− ~x′| (3.3)

and

T ≡ ψ − ψ′

2
+
∑

n

qn arctan
[cos θn+θ′n

2

cos θn−θ′n
2

tan
φn − φ′n

2

]

U ≡ 1

2

∑

n

qn log
[rn + r′n + ∆

rn + r′n − ∆

]
, (3.4)

and for brevity we have introduced spherical polar coordinates (rn, θn, φn) around each

pole at position ~xn. The only singularity of this Green function is at U = T = 0, which for

regular GH spaces with qn ≥ 0 only happens when the points are coincident: ψ = ψ′ and

~x = ~x′.

By integrating this Green function against the fiber ψ, one obtains the trivial Green

function on R
3: ∫ 4π

0
dψ G =

1

4π∆
. (3.5)

One might hope that that equation (3.2) would also give the Green function for am-

bipolar spaces where some of the qn are negative, and indeed the Green function one obtains

(which we refer to as the Page Green function) satisfies the appropriate differential equa-

tion. As before, this Green function is singular when U = T = 0, but in an ambipolar

space this does not only happen when the two points are coincident. Indeed, as one can

see from Eq (3.4), for a fixed (ψ′, ~x′), the points (ψ, ~x) defined by U = T = 0 belong to a

codimension-two hypersurface, and in general U and T can be both positive and negative.

One could also calculate the integral of the ambipolar Page Green function over the

fiber ψ: ∫ 4π

0
dψ GPage =

U

|U |
1

4π∆
(3.6)

and see that this integral is discontinuous along the surface U = 0.

One can also try to construct a physical Green function on an ambipolar space by

piecing the Page Green functions on the patches U > 0 and U < 0:

Gpatch =
1

16π2∆

sinh |U |
coshU − cos T

. (3.7)

The ψ integral of Gpatch then gives the correct three-dimensional propagator, but this

function has a non-physical cusp across the U = 0 hypersurface. Apart from GPage and

Gpatch, there does not seem to be any natural guess for a physical continuation of the

multi-center Taub-NUT Green function to ambi-polar spaces, and hence we do not have a

direct method to construct this Green function.
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Having failed in the brute-force construction, we now take the less direct road by

remembering the ultimate goal of the overall construction: A smooth five-dimensional

geometry. We therefore construct the Green function for a particular family of ambipo-

lar spaces by dimensionally reducing the Green function of the smooth five-dimensional

solutions built using these spaces as a base.

3.2 Preliminaries: the simplest metric with an ambi-polar base, global AdS3×
S2

It has been noted by several authors (see, for example, [23, 42]) that the five-dimensional

metric metric arising from an ambi-polar Eguchi-Hanson metric with GH charges +q and

−q is, in fact, a Zq quotient of global AdS3 × S2. For simplicity, we will locate these GH

charges on the z-axis at z = ±a and define:

r± ≡
√
ρ2 + (z ∓ a)2 , (3.8)

where (z, ρ, φ) are cylindrical polar coordinates on the R
3 base. The harmonic functions

for this solution are

V = q
( 1

r+
− 1

r−

)
, K = k

( 1

r+
+

1

r−

)
, (3.9)

L = −k
2

q

( 1

r+
− 1

r−

)
, M = − 2 k3

a q2
+

1

2

k3

q2

( 1

r+
+

1

r−

)
, (3.10)

where the constant in M has been chosen so as to make the metric regular at infinity.

The vector potentials for this solution are then:

A = q
((z − a)

r+
− (z + a)

r−

)
dφ , ω = −2 k3

a q

ρ2 + (z − a+ r+)(z + a− r−)

r+ r−
dφ . (3.11)

The five-dimensional metric is then:

ds25 ≡ −Z−2
(
dt+µ(dψ+A)+ω

)2
+ Z

(
V −1(dψ+A)2 + V (dρ2 +ρ2dφ2 +dz2)

)
, (3.12)

where

Z = V −1K2 + L = − 4 k2

q

1

(r+ − r−)
, (3.13)

µ = V −2K3 +
3

2
V −1K L+M =

4 k3

q2
(r+ + r−)

(r+ − r−)2
− 2 k3

a q2
.

To map this onto a more standard form of AdS3 ×S2 one must make a transformation

to oblate spheroidal coordinates like the one employed in [43] to map positive-definite

two-centered GH space onto the Eguchi-Hanson form:

z = a cosh 2ξ cos θ , ρ = a sinh 2ξ sin θ , ξ ≥ 0 , 0 ≤ θ ≤ π . (3.14)

In particular, one has r± = a(cosh 2ξ ∓ cos θ). (Note that we have taken the argument of

the hyperbolic functions to be 2ξ for later convenience.) One then rescales and shifts the

remaining variables according to:

τ ≡ a q

8 k3
t , ϕ1 ≡ 1

2 q
ψ − a q

8 k3
t , ϕ2 ≡ φ− 1

2 q
ψ +

a q

4 k3
t , (3.15)
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and the five-dimensional metric takes the standard AdS3 × S2 form:

ds25 ≡ R2
1

[
− cosh2 ξ dτ2 + dξ2 + sinh2 ξ dϕ2

1

]
+ R2

2

[
dθ2 + sin2 θ dϕ2

2

]
, (3.16)

with

R1 = 2R2 = 4k . (3.17)

Note that the metric involves global AdS3 with −∞ < τ <∞.

One should also recall that the GH fiber coordinate has period 4π and therefore, for

|q| = 1, the angles, ϕj , both have periods 2π. For q 6= 1, the Z|q| orbifold associated with the

GH points emerges as a simultaneous Z|q| quotient on the longitudes of the AdS3 and S2.

It is instructive to observe that a particle that is at a fixed spatial point in the GH

base has a world-line with constant ξ and θ and

dϕ1

dτ
= − 1 ,

dϕ2

dτ
= − 2 ⇒ ds25 = − 16k2 cos2 θ dτ2 . (3.18)

This is the world-line of a observer rotating around the AdS3 and S2 simultaneously along

a curve that is null for θ = π
2 and otherwise time-like. The surface θ = π

2 is the simply

the critical surface defined by V = 0 in the GH base. As has been noted elsewhere, and

is evident from (3.16), the five-dimensional metric is completely regular across this surface

and the only artifact of an apparently singular four-dimensional base is that a stationary

particle on this base is simply following a null curve on the critical surface in the five-

dimensional geometry.

3.3 The strategy: reducing a Green function from five to four dimensions

Our goal here is to obtain the scalar Green function for the ambi-polar GH base considered

above, and construct this Green function in such a manner that it can be used to create

five-dimensional solutions by the methods outlined in [31]. One can obtain such a Green

function from the Green function for AdS3×S2 by integrating it along the time coordinate,

t, in (3.12).

To be specific, suppose that we have a function, G(x;x′), that satisfies

2x G(x;x′) =
1√−g δ(x;x

′) , (3.19)

on AdS3 × S2. Let x = (y, t), where y stands for the coordinates on the GH base. Write

the metric (3.12) as:

ds25 ≡ − Z−2
(
dt + kmdy

m
)2

+ Z hmn dy
mdyn , (3.20)

and observe that (3.19) is equivalent to:

−Z−3∂2
t G(x;x′) +

1√
h

(∂m−km∂t)
(√
hhmn(∂n−kn∂t)G(x;x′)

)
=

1√
h
δ(x;x′) . (3.21)

Since all the metric coefficients are time-independent, one can take all the time deriva-

tives to be total derivatives of the various terms in (3.21). Integrating this identity over t

then yields the identity of the form:

2yG(y; y′) =
1√
h
∂m
(√
hhmn∂nG(y; y′)

)
=

1√
h
δ(y; y′) , (3.22)
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provided that one can drop the boundary terms from the t integration. We will construct

the Green function with a periodic time variable and then analytically continue using τ −
τ ′ = iλ. With this prescription the boundary terms will indeed vanish. We therefore define

G(y; y′) ≡
∫ ∞

−∞
dλ G(y, τ = τ ′ + iλ; y′, τ ′) , (3.23)

and this will give us the required Green function on the GH base. One should note that

because of the off-diagonal “angular momentum” terms in the metric (3.20), the analytic

continuation of G(x;x′) will not produce a real integrand in (3.23), however, the imaginary

parts will disappear as boundary terms in the integral. Periodic identification of the time

coordinate, τ , introduces an infinite number of image sources into the original AdS3 space

and one might be concerned that this will generate spurious sources in G(y; y′). How-

ever this is not a problem because we are integrating over the periodic variable and the

periodicity is commensurate with that of the ϕj .

3.4 The scalar Green function on AdS3 × S2

The scalar Green functions for AdS3 × S2 has been extensively discussed in [44] and here

we simply follow their prescription. It also turns out that the particular AdS3 × S2 given

by (3.17) has some extremely nice properties with respect to the procedures of [44].

Consider the more general equation:

(2AdS3
+ 2S2 −M2)G(x;x′) =

i√−g δ(x;x
′) , (3.24)

where the factor of i has been included so that, upon passing to the Euclidean version, the

Green function is real. Expand the Green functions into spherical harmonics on S2 one

obtains:

G(x;x′) =
1

R2
2

∑

ℓ,m

Gℓ,m(w;w′)Yℓ,m(θ, ϕ2)Y
∗
ℓ,m(θ′, ϕ′

2) , (3.25)

where w and w′ are coordinates on AdS3 and
(

2AdS3
−M2 − ℓ(ℓ+ 1)

R2
2

)
Gℓ,m(w;w′) =

i√−gAdS
δ(w;w′) . (3.26)

Since the functions, Gℓ,m, do not, in fact, depend upon m, we may perform the sum

over m to obtain:

G(x;x′) =
1

4πR2
2

∞∑

ℓ=0

Gℓ(w;w′) (2ℓ+ 1)Pℓ(cos γ) , (3.27)

where γ is the great-circle angular separation on the S2:

cos γ ≡ cos θ cos θ′ + sin θ sin θ′ cos(ϕ2 − ϕ′
2) . (3.28)

One can now solve the equation (3.26) for Gℓ in terms of the “chordal distance” on

AdS3. Consider the hyperboloid:

(X0)
2 + (X3)

2 − (X1)
2 − (X2)

2 = R2
1 , (3.29)
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with the metric induced from

ds2 = − dX2
0 − dX2

3 + dX2
1 + dX2

2 . (3.30)

With the coordinate change:

X0 = R1 cosh ξ cos τ , X3 = R1 cosh ξ sin τ , (3.31)

X1 = R1 sinh ξ cosϕ1 , X2 = R1 sinh ξ sinϕ1 , (3.32)

the induced metric becomes precisely the AdS3 factor of (3.16) except that here the time

coordinate, τ , is periodically identified with period 2π. As we noted above, this periodic

identification is consistent with the the world-lines (3.18) over which we wish to integrate.

The chordal distance is given by:

v ≡ − (X0 −X ′
0)

2 − (X3 −X ′
3)

2 + (X1 −X ′
1)

2 + (X2 −X ′
2)

2 = 2R2
1 (ζ − 1) , (3.33)

where

ζ ≡ cosh ξ cosh ξ′ cos(τ − τ ′) − sinh ξ sinh ξ′ cos(ϕ1 − ϕ′
1) . (3.34)

One can then show that [44]:

Gℓ =
1

2∆+1πR1
ζ−∆F

(1
2
∆,

1

2
∆ +

1

2
;∆; ζ−2

)
=

1

4πR1

(
ζ +

√
ζ2 − 1

)1−∆

√
ζ2 − 1

, (3.35)

where F is a hypergeometric function and

∆ ≡ 1 +
R1

R2

√
R2

2

R2
1

+ ℓ(ℓ+ 1) +M2R2
2 . (3.36)

We want the Green function for M = 0 and R1 = 2R2 for which there is a remarkable

simplification: ∆ = 2(ℓ + 1) and the sum in (3.27) can be performed explicitly. Let

η ≡
(
ζ +

√
ζ2 − 1

)−1
= ζ −

√
ζ2 − 1 and observe that (3.27) has the form:

G =
1

8π2R1R2
2

η

1 − η2

∞∑

ℓ=0

(2ℓ+ 1) η2ℓ+1 Pℓ(cos γ)

=
1

8π2R1R2
2

η2

1 − η2

d

dη

∞∑

ℓ=0

η2ℓ+1 Pℓ(cos γ)

=
1

8π2R1R2
2

η2

1 − η2

d

dη

(
η
(
1 + η4 − 2η2 cos γ

)− 1

2
)

=
1

8π2R1R
2
2

(η + η−1)

(η2 + η−2 − 2 cos γ)
3

2

. (3.37)

We therefore find

G =
1

8
√

2π2R1R
2
2

ζ

(2ζ2 − (1 + cos γ))
3

2

, (3.38)
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where γ and ζ are given by (3.28) and (3.34). The result is thus a relatively simple

combination of chordal distances on AdS3 and S2.

One should note that in the Euclideanized AdS3 with τ → iτ , it follows from (3.34)

that ζ ≥ 1 with equality if and only if ξ = ξ′, τ = τ ′ and ϕ1 = ϕ′
1. The denominator

of (3.38) only vanishes if ζ = 1 and γ = 0, which means that only singularity of G occurs

when the points coincide on the Euclideanized background. In addition, ζ > 1 means that

η < 1 and this is the condition for convergence of the series in (3.37).

We have therefore constructed the scalar Green function on Lorentzian AdS3×S2 with

periodic time and seen that it has the appropriate singular structure when Wick rotated

to Euclidean AdS3 × S2. To get to the Green function on the GH base we have to use the

transformation (3.15) and this will lead to a somewhat different analytic continuation. We

now investigate this in more detail.

3.5 Reducing the scalar Green function to the GH base

To get the requisite Green function, G(y; y′), on the GH base, we have to make the changes

of variable:

ϕ1 =
1

2 q
ψ − τ , ϕ2 ≡ φ− 1

2 q
ψ + 2τ , (3.39)

make the analytic continuation τ − τ ′ = iλ and perform the integral (3.23). Simplifying

the normalization for the present, we have:

I ≡ 8
√

2π2R1R
2
2

∫ ∞

−∞
G dλ =

∫ ∞

−∞

ζ

(2ζ2 − (1 + cos γ))
3

2

dλ , (3.40)

=

∫ ∞

−∞

a1 coshλ+ ib1 sinhλ
(
a2 cosh 2λ+ ib2 sinh 2λ+ a0

) 3

2

dλ , (3.41)

where the ai and bj are real variables. It turns out that this integral is elementary and it

is given by:

I =
p√

1
2 (a2 + ib2)

+
p̄√

1
2(a2 − ib2)

, (3.42)

where

p ≡ 1

2
(a2

0 − (a2
2 + b22))

−1
[
(a0 − a2)a1 − b1b2 + i((a0 + a2)b1 − a1b2)

]
, (3.43)

and p̄ is its complex conjugate. The result, while apparently rather simple, is an extremely

compressed form of the answer we are seeking and we first rewrite it in terms of the

coordinates of the points.

Define the following combinations of coordinates:

u ≡ cosh ξ cosh ξ′ , v ≡ sinh ξ sinh ξ′ , x ≡ cos θ cos θ′ ,

y ≡ sin θ sin θ′ , z ≡ e
i
2q

(ψ−ψ′)
, χ ≡ (φ− φ′) , (3.44)

then one has

a1 = u− 1

2
v (z + z−1) , b1 =

i

2
v (z − z−1) ,

a0 = a2
1 + b21 − (1 + x) , a2 + ib2 = (u− vz)2 − ye−iχz . (3.45)
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It is also convenient to take:

Λ ≡ z (a2
0 − (a2

2 + b22)) , m ≡ 2(1 + x)uv + y(u2e−iχ + v2eiχ) , (3.46)

ν ≡ (a0 − a2)a1 − b1b2 + i((a0 + a2)b1 − a1b2) , (3.47)

P ≡
(
2(u− v)2 − (1 + x+ y)

)(
2(u+ v)2 − (1 + x− y)

)
+ 8uvy(1 − cosχ) , (3.48)

z± ≡ 1

2m

[
y2 − (1 + x)2 + 2(u2 + v2)(1 + x) + 4uvy cosχ±

√
(1 + x)2 − y2

√
P
]
.(3.49)

Adjusting the overall normalization, the desired Green function is then:

Ĝ ≡ 8π2R1R
2
2

a

∫ ∞

−∞
G dλ = Re

[ z ν

aΛ
√
a2 + ib2

]
. (3.50)

This is the Green function on the GH base and our task is now to unpack the details and

understand the result. As with all Green functions, the physics lies in the singular structure

and asymptotic behaviors.

3.6 Properties of the Green function

While the Green function (3.50) is rather unintuitively expressed and represents a very

complicated function of the physical variables, its overall structure can be understood fairly

easily. Here we will summarize the important features and relegate some more technical

details to appendix A. Since z is simply a phase, the physical domain has |z| = 1, however

because we are going to want to use residue calculus to evaluate integrals over physical

values of z, we are going to want to understand the behavior of this Green function in the

domain |z| ≤ 1.

Since all the constituent functions are analytic, the only potential sources of singular-

ities are Λ and
√
a2 + ib2. The bottom line will be that the function Λ has essentially the

same singularities as the Page Green function, while the remaining components play the

crucial role of canceling the unphysical singularities or cusps at the critical (V = 0) surface

and at the dangerous “image” surfaces, and giving a smooth physical Green function.

3.6.1 Returning to the GH geometry

We start by recasting our result, as far as we can, in terms of the original GH geometry.

Following [32], we define r±, r±, θ± and θ′± to be the radial distances and polar angles of

the two points as measured from the GH points at z = ±a, and we define the functions:

T ≡ 1

2q
(ψ − ψ′) +

∑

±
± arctan

[
cos 1

2(θ± + θ′±)

cos 1
2(θ± − θ′±)

tan
1

2
(φ− φ′)

]
(3.51)

U ≡ 1

2

∑

±
± log

[
r± + r′± + ∆

r± + r′± − ∆

]
, (3.52)

where

∆ ≡
∣∣~r − ~r′

∣∣ =
(
r2± + r′±

2 − 2 r±r
′
± (cos θ± cos θ′± + sin θ± sin θ′± cos(φ− φ′))

) 1

2 . (3.53)
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Note that these functions are normalized differently from those of [32] in that we have

divided by the GH charge, q.

It is a rather tedious process to relate the foregoing, more geometric, functions and

variables to those of the previous subsection. The basic relationship is that r± = a(cosh 2ξ∓
cos θ) and r′± = a(cosh 2ξ′ ∓ cos θ′). Then by drawing triangles and finding expressions for

various side lengths one can obtain:

√
r+r− cos

1

2
(θ+ − θ−) = a sinh 2ξ ,

√
r+r− sin

1

2
(θ+ − θ−) = a sin θ , (3.54)

√
r+r− cos

1

2
(θ+ + θ−) = a sinh 2ξ cos θ ,

√
r+r− sin

1

2
(θ+ + θ−) = a cosh 2ξ sin θ .

(3.55)

The function, Λ, is manifestly a quadratic in z, and one can easily show that it has

the following form

Λ = m (z − z+)(z − z−) with z+z− =
m̄

m
. (3.56)

One can then establish the following identities:

eiT =
m

|m| z , e±U =
m

|m| z± , ∆ = a
√
P ,

|m| =
1

4a2

[
(r+ + r′+)2 − ∆2

] 1

2
[
(r− + r′−)2 − ∆2

] 1

2 . (3.57)

From which one obtains:

sinhU =
1

2 a |m| ∆ (cos θ + cos θ′) , (3.58)

and

z

Λ
= − 1

2 |m|
1

(coshU − cos T )
= − a

∆

1

(cos θ + cos θ′)
sinhU

(coshU − cosT )
. (3.59)

Thus we have recovered the core part of the Page Green function.

We have not found any particularly simple form for a2 + ib2 or ν in terms of U and T ,

but as we will now see, these functions play an essential role in avoiding jump discontinuities

across critical and image surfaces.

3.6.2 Residues and pole structure

It follows from (3.56) that |z+z−| = 1 and so if z± is inside the unit circle, then z∓ is

outside the circle. One can also verify that

ν = − (1 + x)(u− vz) − y(v − uz)e−iχ . (3.60)

and

(a2 + ib2) = ((1 + x)2 − y2)−1(ν2 + y e−iχΛ) = (cos θ + cos θ′)−2(ν2 + y e−iχΛ) . (3.61)
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The importance of this identity is to show that there is a uniform, analytic choice of square

root on the locus Λ = 0. More to the point, the roots Λ = 0 correspond to:

z = z± ⇔ ν = ± (cos θ + cos θ′)
√
a2 + ib2 . (3.62)

Thus, we have:

Res
[ ν

aΛ
√
a2 + ib2

]
z=z±

=
(cos θ + cos θ′)
am (z+ − z−)

. (3.63)

Note the absence of ± signs in the result.

The factor of ν√
a2+ib2

thus has two very important effects on the result. First, it

cancels the (cos θ+ cos θ′) in (3.59) to give the Page Green function. If this term were not

canceled then there would be the spurious “image” poles, alluded to earlier, at θ = π− θ′.
The second effect is more subtle: there is an extremely important effect on signs coming

from (3.62). Indeed, the effect is precisely the difference between:

1

2πi

∮

C

dz

(z − z0)(z + z0)
= ± 1

2z0
,

1

2πi

∮

C

dz

(z − z0)(z + z0)

z

z0
=

1

2z0
, (3.64)

where the sign depends whether the (counterclockwise) contour, C, surrounds ±z0. The

sign of the second integral does not depend upon whether the contour surrounds either

+z0 or −z0. This removes jump discontinuities in Green function.

3.7 Solutions and their asymptotic behavior

In this section we set up our conventions for constructing the wiggling solutions from

source currents and then examine the asymptotic behavior of these solutions in various

limits. These limits provide the crucial physical data for the regularity conditions on the

wiggling supertube and in the bubble equations.

3.7.1 Short-distance behaviour

First, in the limit that ~r → ~r ′ and ψ → ψ′ one has, from (3.52), T,U → 0 and

z

Λ
∼ − a cos θ

∆

sinhU

(coshU − cos T )
,

ν√
a2 + ib2

∼ − 2√
cos2 θ

. (3.65)

Thus

Ĝ ∼ 1

∆

cos θ

| cos θ|
sinhU

(coshU − cos T )
∼ 1

∆

| sinhU |
(coshU − cos T )

∼ 2

∆

|U |
(U2 + T 2)

. (3.66)

The absolute values come from the
√

cos2 θ and have the effect of keeping the coefficient

of the singular part of the Green function positive as one crosses the surface V = 0.

For a small separation in the GH base, the infinitesimal proper length is given by:

(δs)2 = V −1
(
(ψ′ − ψ) + q(cos θ+ − cos θ−)(φ− φ′)

)2
+ V ∆ . (3.67)

One then finds that (3.66) can be written as

Ĝ ∼ 4 q

|δs|2 . (3.68)
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Note the absolute values in the denominator. As we will discuss below, this result means

that Ĝ is the properly normalized Green function for our purposes.

The Green function, Ĝ, depends upon ψ,ψ′ via cos T , where T is given by (3.52)

and so Ĝ is periodic on the interval [0, 4πq]. It is, of course, elementary to produce a

Green function with a reduced periodicity, like 4π, simply by summing over image sources

appropriately. Here we will work with the function Ĝ and sources that have the same

periodicity and so the solution to the Laplacian with a source density, ρ(ψ′), along the GH

fiber located at ~r ′ is therefore given by:

Φ(~r, ψ; ~r ′) =

∫ 4πq

0
Ĝ(~r, ψ; ~r ′, ψ′) ρ(ψ′) dψ′ . (3.69)

It is convenient to define the associated total charge by:

Q ≡
∫ 4πq

0
ρ(ψ′) dψ′ . (3.70)

In the coincidence limit, when one approaches the source, ~r → ~r ′, ψ → ψ′ the dominant

contribution to (3.69) comes from integrating through the singularity and so

Φ ∼
∫ ψ+ǫ

ψ−ǫ

4q∣∣V −1(ψ − ψ′)2 + V ∆
∣∣ρ(ψ

′) dψ′

∼ 4q

∆
ρ(ψ) arctan

( ǫ

|V |∆
)

→ 4πq

∆
ρ(ψ) . (3.71)

This is precisely what one should expect: For a constant charge, the charge density is

ρ = Q
4πq and thus (3.71) gives Φ ∼ Q

∆ , which is the canonical form in the GH base.

Moreover, if one approaches any line distribution of charge then is should appear, locally,

like a constant charge and hence one must obtain (3.71). This is the reason for selecting

the normalization of Ĝ in (3.50).

3.7.2 Asymptotics at the Gibbons-Hawking points

Another important limit is to understand the behavior of Ĝ and the solution Φ, defined

in (3.69), near the GH points. This evaluation is straightforward and one finds that at

r± = 0, or ~r = (0, 0,±a), one has

Ĝ(~r = (0, 0,±a), ψ; ~r ′, ψ′) =
1

r′±
. (3.72)

Observe that this is independent of ψ and ψ′ and so the solution (3.69) depends only on

the total charge of the supertube, and not on the way this charge is distributed on the

supertube world-volume:

Φ(~r = (0, 0,±a), ψ; ~r ′, ψ′) =
1

r′±

∫ 4πq

0
ρ(ψ′) dψ′ ≡ Q

r′±
. (3.73)

One should have anticipated a result of the form (3.73) from the outset: At the GH points

the GH fiber, parametrized by ψ collapses to a point but the space-time looks locally
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smooth. Regularity therefore requires that any non-trivial Fourier mode on the fiber must

vanish at the GH point and only the constant mode can survive. Thus the GH points only

feel the total charge of the fluctuating solution.

Now recall that the bubble equations at the GH points are local conditions and so it

follows that in a geometry with fluctuating electric charge densities along the GH fiber, the

bubble equations for the GH points are unchanged by the fluctuations and only depend

upon the total charge of the fluctuating component.

3.7.3 Behaviour at infinity

We now consider the behavior of the Green functions and solutions of the form (3.69) as

r = |~r| becomes large. This corresponds to taking ξ to be large and (3.14) implies

e−2ξ ∼ a

2 r
. (3.74)

One can now take the limit of large ξ in (3.50) but it is simpler to take the large ξ limit

directly in (3.41). In particular, note that in the large ξ limit, with the analytic continuation

τ − τ ′ = iλ, one has:

ζ ∼ 1

2
eξ(cosh ξ′ cos(τ − τ ′) − sinh ξ′ cos(ϕ1 − ϕ′

1)) (3.75)

=
1

2
eξ(a1 coshλ + ib1 sinhλ) . (3.76)

Thus

Ĝ ≡ 1√
2 a

∫ ∞

−∞

ζ

(2ζ2 − (1 + cos γ))
3

2

dλ (3.77)

∼
∫ ∞

−∞

1

4 a ζ2
dλ =

1

4 a

∫ ∞

−∞

1

(a1 coshλ+ ib1 sinhλ)2
dλ (3.78)

=
1

2 a (a1 − ib1)(a1 + ib1)
∼ 2 e−2ξ

a (cosh ξ′ − z sinh ξ′)(cosh ξ′ − z−1 sinh ξ′)
(3.79)

∼ −1

r

z

sinh ξ′ cosh ξ′(z − coth ξ′)(z − tanh ξ′)
. (3.80)

Now suppose that a charge density has the Fourier series:

ρ(ψ′) =
∞∑

n=−∞
αn e

in
2q
ψ′

, (3.81)

for which reality implies α−n = αn. Then one finds that the asymptotic form of the

fundamental solution, (3.69), is given by:

Φ(ξ′, ψ) ∼ 2iq

r

∞∑

n=−∞
αne

in
2q
ψ
∮

|z|=1

z−n dz
sinh ξ′ cosh ξ′(z − coth ξ′)(z − tanh ξ′)

dψ′ . (3.82)

This integral is an elementary residue for n non-positive, while the result for n positive is

the complex conjugate of the result for n negative. The solution is thus:

Φ(ξ′, ψ) ∼ 4πq

r

[
α0 +

∞∑

n=1

(
αnw

n + ᾱnw̄
n
)]
, w ≡ tanh ξ′ e

i
2q
ψ . (3.83)
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Observe that we have the following limits

Φ(0, ψ) ∼ 4πq

r
α0 , Φ(ξ′ = ∞, ψ) ∼ 4πq

r
ρ(ψ) , (3.84)

and ξ′ = 0 puts the supertube on the axis between the two GH points, while ξ′ → ∞
corresponds to moving the supertube off to infinity in the GH space. Thus the asymptotics

of the solution averages out if the supertube is between the two GH points and is directly

proportional to the density if the supertube is at infinity.

We are generically interested in putting bounds upon asymptotic values of our solu-

tions, and to that end we note that the asymptotic functional dependence (3.83) satisfies the

Laplace equation on the semi-infinite cylinder defined by − log(tanh(ξ′)) and ψ. It follows

from the maximum modulus theorem that the asymptotic behaviour of the fundamental

solution as ξ → ∞ is bounded by the boundary values, (3.84).

4 The fully back-reacted solution for a wiggling supertube

It now remains to assemble all the constituents of the fully back-reacted solution and to

check the regularity at the supertube and at the GH points and then impose any constraints

required by regularity and absence of CTC’s. We found, in section 3.7.2, that in a geometry

with fluctuating electric charge densities along the GH fibers, the bubble equations are

unchanged by the fluctuations and only depend upon the total charge of the fluctuating

component. This has the important consequence that regularity at the GH points for the

corresponding wiggling supertube has exactly the same form as the regularity conditions

for the round, non-wiggling supertube. There are, however, two important differences.

The first difference is that around the wiggling supertube the standard regularity

conditions are replaced by a simple generalization to a local regularity conditions along the

fiber. Secondly, we find that the dipole-dipole interactions will allow large negative values

of the angular momentum, Ĵ , of the supertube, and thus enable entropy enhancement, but

this also has the concomitant effect of having the supertube approach the critical (V = 0)

surface where it becomes larger and floppier, while remaining round. The fluctuating

charge density thus generates a displacement in the base space and an associated change

of the supertube radius. We can then interpret the result as a shape mode that preserves

roundness: The fluctuations in charge density can be thought of as being the result of

differential expansion of different parts of the supertube (while keeping it round) diluting

charge in some regions and concentrating it in others. This process is depicted in figure 4.

We now construct the solution in detail and exhibit all the regularity constraints.

4.1 The constituents of the solution

As shown in section 2, the full solution for a round supertube with fluctuating charge

densities inside a GH space is given by 8 harmonic functions in five dimension:

V = q
( 1

r+
− 1

r−

)
, KI = kI

( 1

r+
+

1

r−

)
+ δI3

k̂

∆
,
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Figure 1. A round supertube can retain its round shape but concentrate or dilute charges in different

regions as it expands or contracts. Some large sectors of the original tube can be mapped into smaller

sectors, concentrating charge, while some sectors can become expanded resulting in a charge dilution. Even

though the shape of the supertube remains circular, the charge density modes induce a radius change and

can thus be seen as special class of shape mode.

LI = ℓI

( 1

r+
− 1

r−

)
+

2∑

A=1

δAI λA(~r, ψ;~r ′) , (4.1)

M = m0 + m
( 1

r+
+

1

r−

)
+ j(~r, ψ;~r ′) ,

where the components of the solution sourced by the fluctuating densities are

λA(~r, ψ; ~r ′) =

∫ 4πq

0
Ĝ(~r, ψ; ~r ′, ψ′) ρA(ψ′) dψ′ ,

j(~r, ψ; ~r ′) =

∫ 4πq

0
Ĝ(~r, ψ; ~r ′, ψ′) ρ̂(ψ′) dψ′ , (4.2)

and

ℓI = − 1

2q
CIJKkJkK , m =

1

12q2
CIJKkIkJkK . (4.3)

Note that in (4.1) we have chosen a gauge so that the KI have equal charges at the GH

points. For simplicity, we will also assume that q > 0 so that integrals like (4.2) run in the

canonical (positive) orientation. We will also assume that the kI are all positive so that it

is simple to assign signs to square roots in the metric and other functions.

With these choices we have:

Z1 = −4 k2k3

q

1

(r+ − r−)
+

k2k̂

q

F

∆
+ λ1 , (4.4)

Z2 = −4 k1k3

q

1

(r+ − r−)
+

k1k̂

q

F

∆
+ λ2 , Z3 = − 4 k1k2

q

1

(r+ − r−)
, (4.5)

µ = m0 + j +
4 k1k2k3

q2
(r+ + r−)

(r+ − r−)2
+
k1k2k̂

q2 ∆
(F 2 − 1

2
) +

1

2q
(k1λ1 + k2λ2)F , (4.6)

where

F ≡ − (r+ + r−)

(r+ − r−)
. (4.7)
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It is also convenient to define a special value, F̂ , of F at the supertube:

F̂ ≡ F~r=~r′ = − (r′+ + r′−)

(r′+ − r′−)
, (4.8)

where r′± = |~r′ − ~r±|.
Note that we do not have an explicit solution to the (linear) equations, (2.20)

and (2.23), for ~ω, but we will not need the explicit solution in the following.

4.2 Supertube regularity

Consider a supertube located at ~r = ~r ′ in the R
3 base of the GH space and with charges

associated with K3, L1, L2 and M . That is, suppose that only these functions diverge

as ∆−1 for ∆ ≡ |~r − ~r ′| → 0. Moreover, as above, we allow L1, L2 and M to have

densities that depend upon ψ. The regularity of this supertube amounts to requiring that

the metric (2.7) be regular and without CTC’s at the supertube. There are two potential

dangers: (i) Divergences parallel to the fiber, and (ii) Dirac strings in ~ω. As discussed

in [19], for this supertube, the former condition requires that for all ψ:

lim
∆→0

∆2
[
Z3 (K3)2 − 2µV K3 + Z1Z2V

]
= 0 , (4.9)

where ∆ = |~r − ~r ′|.
To analyze Dirac strings, consider any two-sphere, S2, in the R

3 base of the GH space.

If the magnetic field, ~∇× ~ω, has a monopole source inside the S2 then ~ω will have a Dirac

string somewhere on this S2. Let φ be the polar angle around this Dirac string and suppose

that the charge density is independent of ψ, then one can let ψ vary in such a way that

(dψ+A) vanishes as φ goes around the string. If one does this, the closed curve around the

Dirac string is necessarily time-like in the metric (2.7). If the charge density varies then

the foregoing argument may not work, but if the variation is small then there will still be

CTC’s associated with the Dirac string. It is conceivable that one might find a conspiracy

for large variation in the charge density and that one might avoid CTC’s associated with

Dirac strings, but it is simpler to require that there are no Dirac strings in ~ω no matter

how it depends upon ψ. That is, for all ψ we impose the condition:
∫

S2

(~∇× ~ω) · n̂ = 0 , (4.10)

where the S2 is any small sphere in the R
3 base drawn around the charge source and n̂ is

the unit outward normal to this S2.

Suppose that the charge density at ~r = ~r ′ has a monopolar magnetic field and consider

a vanishingly small S2 around ~r ′. As ∆ → 0, the Cartesian R
3 components of ~ω will diverge,

in a direction-dependent manner, as ∆−1. Also assume that ~r ′ is not a GH point and so

V and A ≡ ~A · d~y are smooth at ~r = ~r ′. Now imagine integrating equation (2.17) over this

S2: The terms involving ∂ψ~ω and ~A× ∂ψ~ω and V ~A∂ψµ do not contribute to this integral

as ∆ → 0. Therefore we find that

∫

S2

(~∇× ~ω) · n̂ =

∫

S2

V
(
~∇µ −

3∑

I=1

ZI ~∇
(
V −1KI

))
· n̂ . (4.11)
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For this to vanish as ∆ → 0 one must have:

lim
∆→0

∆
[
V µ − Z3K

3
]

= 0. (4.12)

This result is of the same form as the result for constant charge densities, but here this

equation is to be applied as a functional constraint that must be true for all ψ, just like (4.9).

One can use (4.12) in (4.9) to obtain the simpler condition:

lim
∆→0

∆2
[
V Z1Z2 − Z3 (K3)2

]
= 0 . (4.13)

It is slightly more convenient to work with (4.12) in (4.13).

Let ρ1(ψ), ρ1(ψ) and ρ̂(ψ) denote the charge densities that generate the functions L1,

L2 and M via the expression (3.69). Let k̂ be the magnetic dipole charge of the supertube,

that is:

K3 ∼ k̂

∆
, (4.14)

as ∆ → 0. In addition, let V̂ , K̂1, K̂2, L̂3 and Ẑ3 denote the (finite, ψ-independent) values

of the corresponding functions at the supertube location (~r = ~r ′). Using the limiting

behavior in (3.71), one finds that (4.12) becomes

4πq
[
K̂1ρ1(ψ) + K̂2ρ2(ψ) + 2 V̂ ρ̂(ψ)

]
= k̂ L̂3 . (4.15)

Similarly, (4.13) becomes

[
4πqρ1(ψ) + k̂V̂ −1K̂2

] [
4πqρ2(ψ) + k̂V̂ −1K̂1

]
= k̂2V̂ −1Ẑ3 . (4.16)

Combining this with (4.15) gives the simple relationship between the densities:

k̂ρ̂(ψ) = 2πq ρ1(ψ) ρ2(ψ) . (4.17)

Note that if one specifies ρ1(ψ) then these identities fix ρ2(ψ) and ρ̂(ψ) in terms of

ψ-independent geometric factors.

Finally, define the charges:

Q̂A ≡
∫ 4πq

0
ρA(ψ′) dψ′ , Ĵ ≡

∫ 4πq

0
ρ̂(ψ′) dψ′ . (4.18)

It is useful to note that (4.15) integrates to:

[
K̂1Q̂1 + K̂2Q̂2 + 2 V̂ Ĵ

]
= k̂ L̂3 . (4.19)

For constant charge densities one thus gets this equation combined with (4.17), which yields

Ĵ =
Q̂1 Q̂2

2k̂
. (4.20)
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4.3 The bubble equations

The bubble equations at the two GH points are given by setting µ = 0 at each point:

µ± = m0 +
2 k1k2k3

aq2
+
( k̂k1k2

2q2
± 1

2q

2∑

A=1

kAQ̂A + Ĵ
) 1

r′±
= 0 . (4.21)

The difference of these two equations gives:

µ+ − µ− =

(
k̂k1k2

2q2
+ Ĵ

)( 1

r′+
− 1

r′−

)
+

1

2q

( 2∑

A=1

kAQ̂A

)( 1

r′+
+

1

r′−

)
= 0 . (4.22)

This is precisely equation (4.19) and this observation is the analog of the fact that, when

the charge densities are constant, the sum of the bubble equations vanishes. One can

write (4.22) as

F̂ = − 2q

( 2∑

A=1

kAQ̂A

)−1( k̂k1k2

2q2
+ Ĵ

)
. (4.23)

This equation determines the scale-invariant ratio, r′+/r
′
− while the remaining bubble equa-

tion in (4.21) determines m0.

Thus, once one specifies all the charges, the geometry is fixed. The non-trivial con-

straints come from the fact that the charge densities on the supertube are all related and

thus the charges Q̂A and Ĵ must be related. Indeed, (4.16) gives:

4πqρ2(ψ) = − k̂k1

q

[
4πqρ1(ψ) +

k̂k2

q
F̂

]−1 [
4πqρ1(ψ)F̂ +

k̂k2

q

]
. (4.24)

One then gets ρ̂(ψ) from (4.17). In particular, from (4.18) one has

Ĵ = − k1

2 q

∫ 4πq

0
ρ1(ψ)

[
4πqρ1(ψ) +

k̂k2

q
F̂

]−1 [
4πqρ1(ψ)F̂ +

k̂k2

q

]
dψ . (4.25)

5 Comparison with probe supertubes

In the previous section we obtained the regularity conditions near the wiggling supertube

in the fully back-reacted solution with two GH points and a supertube. Obviously one

would like to generalize this solution to include more supertubes and more GH points but,

as we discussed earlier, such fully back-reacted solutions are, at present, beyond the limit

of explicit computation and so we must seek another approach to this problem.

It is natural to fall back upon a probe approximation and use the DBI action that

describes supertubes in the regime of parameters in which they do not back-react on the

geometry. This action can be used to analyze more general configurations, but the prob-

lem then becomes one of determining the extent to which the DBI action captures the

correct physical behavior of the complete physical (back-reacted) solution. In [19], it was

shown that for supertubes with constant charge densities, the DBI action of supertubes

always precisely captures the conditions necessary for smoothness and regularity of the
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fully back-reacted metric at the supertube location. Our purpose here is to generalize this

to supertubes that have non-trivial density modes, and show that the solutions of the DBI

action always correspond to supertubes whose back-reacted solution is smooth and free of

CTC’s. We show that not only can one use the DBI action to extract the local regularity

around the supertube but one can combine the information coming from this action with

the general analysis of solutions in section 2 to infer the full regularity conditions at the

GH points that lie far from the supertube, and thus find the complete set of functional

bubble equations that govern multi-center solutions containing one wiggly supertube in an

arbitrary Gibbons-Hawking base space.

5.1 Regularity conditions from the supertube Born-Infeld action

The Born-Infeld analysis of supertubes is best done in the duality frame where the super-

tube has D0 and F1 electric charges and D2 magnetic dipole charges, and for this we first

have to dualize the background given in (2.1) and (2.3) to this type IIA frame. The details

of this transformation may be found in [19] and here we will also adopt the same notation

and conventions.

We first reduce to ten dimensions along x5 and then do two T-dualities along x7 and

x8. The F1 string and the dipole D2 brane are wrapped along the x6 = z. The resulting

metric (in the string frame) is:

ds210 = − 1√
Z2Z3Z1

(dt + k)2 +
√
Z2Z3 ds

2
4 +

√
Z2Z3

Z1
dz2 +

√
Z2

Z3
ds2T 4 (5.1)

and the dilaton and the Kalb-Ramond field are given by:

eΦ =

(
Z3

2

Z3Z2
1

) 1

4

, B = (Z−1
1 − 1)dt ∧ dz + Z−1

1 k ∧ dz . (5.2)

The non-trivial RR potentials are:

C(1) = (Z−1
2 − 1)dt + Z−1

2 k , (5.3)

C(3) =
(
ζa + V −1K1ξ(2)a

)
Ω

(a)
− ∧ dz −

(
Z−1

1 (dt+ k) ∧B(2) + dt ∧A(1)
)
∧ dz , (5.4)

where Ω
(a)
− , ξ(2), k and ZI are given respectively by (2.9), (2.11), (2.14) and (2.12), and

~∇× ~ζ = −~∇L3 . (5.5)

We will denote the world-volume coordinates on the supertube by ξ0, ξ1 and ξ2 ≡ θ.

To make the supertube wrap z = x6 we take ξ1 = z and we will fix a gauge in which

ξ0 = t. Note that z ∈ (0, 2πLz). The profile of the tube, parameterized by θ, lies in the

four-dimensional non-compact Gibbons-Hawking space. We will here take the profile to be

round, θ = kψ, with dipole charge k, but will allow for density modes: the gauge field, F ,

living on the world-volume of the supertube will depend on θ. We take

2πα′F ≡ F = Ftzdt ∧ dz + Fzθdz ∧ dθ . (5.6)
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Supersymmetry requires that Ftz = 1 [18], but Fzθ, which corresponds to the D0-charge

density, can be an arbitrary function, of θ, Fzθ = Fzθ(θ).
The supertube action is a sum of the DBI and Wess-Zumino (WZ) actions:

S = −TD2

∫
d3ξe−Φ

√
−det

(
G̃ab + B̃ab + Fab

)
+TD2

∫
d3ξ[C̃(3) + C̃(1) ∧ (F + B̃)] , (5.7)

where G̃ab and B̃ab are the induced metric and Kalb-Ramond field on the world-volume

of the tube. We have also chosen the orientation such that ǫtzθ = 1, and throughout this

section all the functions will be evaluated at the location of the supertube, and we will

omit the hats that we used to note this in section 4

After some algebra, the action simplifies to:

S = TD2

∫
d3ξ

{[(
1

Z2
− 1

)
Fzθ +

K1

Z2V
+

(
µ

Z2
− K2

V

)
(Ftz − 1)

]

−
[

1

V 2Z2
2

[
(K1 − V (µ(1 −Ftz) −Fzθ))2 + V Z2Z3(1 −Ftz)(2 − Z1(1 −Ftz))

]]1/2}
.

(5.8)

For a supersymmetric configuration (Ftz = 1) we have:

SFtz=1 = SDBI + SWZ = −TD2

∫
dtdzdθFzθ . (5.9)

The foregoing supertube carries F1 and D0 “electric” charges, given by:

NST
1 =

1

TF1

∫
dθ

∂L
∂Ftz

∣∣∣∣
Ftz=1

, NST
2 =

TD2

TD0

∫
dzdθ Fzθ . (5.10)

To avoid the proliferation of parameters, it is convenient to use the system of units described

in the appendix of [19]. With these conventions, the supertube supergravity charges, Q̂1

and Q̂2, and dipole charge, k̂, are related to the integer charges, NST
1 , NST

2 and k via:

Q̂A =
1

4
NST
A , k̂ =

1

2
q k , (5.11)

and the values of the tensions are:

TD0 = 1 , 2πLz TF1 = 1 ,
2π TD2

TF1
= 1 . (5.12)

The Hamiltonian density is:

H|Ftz=1 =

∫
dz

[
∂L
∂Ftz

Ftz − L
]

Ftz=1

≡ 4
(ρ1

k
+
ρ2

k

)
, (5.13)

where we introduced ρ1 and ρ2, the charge densities of F1 and D0 charges respectively5:

ρ1

k
=

1

4TF1

∂L
∂Ftz

∣∣∣∣
Ftz=1

,
ρ2

k
=
TD2

4

∫
dzFzθ . (5.14)

5The factor of 4 in (5.13) comes from the relation (5.11) for Q̂A.
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Note that, in the Born-Infeld calculation, we are treating a supertube of dipole charge k

as a supertube of dipole charge one wrapped k times, and hence the ρI

k are densities per

unit strand of the supertube, and the total density is ρI . We want to remind the reader

that ρ1, ρ2 are not constant but vary with ψ.

One can easily integrate this to get the total Hamiltonian of the supertube
∫
dθ H|Ftz=1 = NST

1 +NST
2 . (5.15)

Thus the energy of the supertube is the sum of its conserved charges which shows that the

supertube is indeed a BPS object.

In the DBI analysis, the first equation determining the regularity of the supertube

comes from the relation that gives the F1 charge density ρ1

ρ1 =
k

4TF1

∂L
∂Ftz

∣∣∣∣
Ftz=1

=
k TD2

4TF1

[
−K

2

V
+

Z3

K1 + V Fzθ

]
. (5.16)

Using the relation (5.11) for k̂, the values of the tensions (5.12) and the definition of

ρ2 (5.14), this can be rewritten as
(

4πq ρ1 + k̂
K2

V

)(
4πq ρ2 + k̂

K1

V

)
= k̂2Z3

V
, (5.17)

and this is exactly the same equation as (4.16).

The second regularity condition comes from expressing the angular momentum of the

tube as a function of the charge densities. Note that, in contrast to the supergravity

construction in which this angular momentum is a free parameter, in the DBI calculation

the supertube angular momentum is related directly to the other charges. The angular

momentum density ρ along the ψ circle is, in general, given by

ρ

k
=

1

8

∫
dz

∂L
∂ψ̇

. (5.18)

One should note that, even if one is interested in time-independent solutions, in order to

compute ρ one has to allow a time dependence initially, compute and ρ, and only then

impose time independence. The angular momentum of the supertube is then given by

J =

∫
dθρ . (5.19)

After lengthy, but straightforward computation, one finds:

ρ =
k TD2 2πLz

8
V −1

(
Z3 −K2Fzθ −

Z3K
1

K1 + V Fzθ

)

=
k̂

8πq
V −1

(
Z3 −

4πq ρ2

k̂
K2 − k̂V −1 Z3K

1

4πq ρ2 + k̂K
1

V

)
, (5.20)

where, in the second line, we have used the relations (5.11), (5.12) and (5.14), along with

the fact that Fzθ is independent of z. Using (5.17), (5.20) can be rewritten as:

4πq(2ρV + ρ1K
1 + ρ2K

2) = k̂L3 , (5.21)
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or again

k̂ρ = 2πq ρ1ρ2 . (5.22)

Since the densities ρ1, ρ2 and ρ are functions of ψ, these two equations are functionnal

equations, depending on ψ. They exactly match (4.15) and (4.17). Hence the supergrav-

ity and the Born-Infeld calculation give the same regularity conditions for supertubes of

arbitrary charge density.

5.2 Obtaining the bubble equations from the DBI action

In the last subsection, we showed that one can obtain the regularity conditions at the

supertube location directly from the DBI action, even for a wiggling supertube. Since the

supertube is treated as a probe, the regularity conditions for the fully back-reacted solution

at the other GH points - in other words the bubble equations - are not captured by the

DBI analysis. Nevertheless, we will show here that the structure of the general solution

outlined in section 2, and in particular the regularity conditions at the GH points allows

us to infer the complete set of functional bubble equations starting from the regularity

condition at the supertube location.

In order to obtain the bubble equations from the regularity conditions of a supertube

with variable charge densities, we need to first understand these equations for a supertube

with constant charge density in a multi-center GH solution. Since this solution does not

depend on the Gibbons-Hawking fiber, it descends to a multi-center four-dimensional solu-

tion of the type first constructed in [12], where the GH centers are D6 and anti-D6 fluxed

branes and the supertube is a fluxed D4 brane. For a solution with N GH centers and one

supertube, there are N bubble or integrability equations insuring absence of Dirac-Misner

strings at the GH points, and one such equation for the supertube point. The sum of the

(N + 1) bubble equations is zero.

An important feature of these equations is that they only depend on the pairwise

interaction between the centers, and do not contain terms that depend on the product

of charges from three or more points. For example, each term in the supertube bubble

equation depends on the supertube charges and on the charges at one of the GH centers.

There is no term proportional to the product of two or more far-away GH points.

As we have shown in the explicit construction of the fully back-reacted solution, the

two properties: the fact that the bubble equations sum up to zero and only involve pairwise

interactions, are still true for solutions with wiggling supertubes. It is also easy to see that

these two properties hold more generally for solutions with arbitrary number of centers and

varying charge densities. Recall that the bubble equation at a given center can be obtained

from the requirement that there be no Dirac-Misner (DM) string starting at that center.

Suppose one has already ensured the cancellation of DM strings at all points but one. Then

the last point can only have a DM string ending at infinity and if one has already imposed

regularity at infinity, it follows that the last bubble equation is automatically satisfied.

This establishes the first property of the bubble equations, that is, their sum is zero.

The pairwise property of the bubble equations follows from the general structure of

equation (2.23), determining the angular momentum vector ~ω: at both the GH points and
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at the supertube point, the right-hand side of equation (2.23) is sum of products of the local

charges with harmonic functions that satisfy linear equations. Hence, the contributions

from various centers to the ~ω equation for the supertube add linearly.

In order to write the bubble equation for the supertube in the usual form, one should

observe that equations (5.21) and (5.22) imply that if the supertube is round and hence it

sits at a point in the R
3 base of the GH space, the two electric densities and the angular

momentum density are not independent. Hence, this supertube has one function worth of

degrees of freedom.

If one now integrates equation (5.21) over the supertube world-volume, one obtains

the standard bubble equation for the supertube:

Q̂1K1|ST + Q̂2K2|ST − k̂L3|ST + JV |ST = 0 , (5.23)

where Q̂1 and Q̂2 are the total electric charges, and J is the total angular momentum of

the wiggly supertube (5.19).

Hence, one can imagine taking a round supertube of given total charges Q̂1 and Q̂2

and letting the charge densities wiggle in accordance to (5.21)-(5.22). The first three terms

in the supertube bubble equation (5.23) remain the same, and only the term proportional

to the supertube angular momentum, J , is modified. Since one assumes the total charges

to be fixed, it is clear that because there is only one independent density function, the

location of the tube will change in order to satisfy (5.23).

If one now remembers that the K1, K2, L3 and V harmonic functions are sums of

harmonic functions sourced at each of the Gibbons-Hawking points, one can easily see that

the supertube bubble equation is entirely composed of terms of the form:

Q̂1k
i
1

|~rST − ~ri|
(5.24)

plus, possibly, some constants.

Using the fact that all the terms in the bubble equations for the other GH center

contain pairwise interaction terms, and the fact that the bubble equations sum up to zero,

we find that the only effect of the wiggly supertube in the bubble equations for a given GH

center, i, is to modify the terms

Jqi + Q̂1k
i
1 + Q̂2k

i
2 − k̂Qi3

|~rST − ~ri|
(5.25)

by replacing J, Q̂1, Q̂2 and k̂ with the corresponding quantities for the wiggly supertube.

Furthermore, given that k̂ does not oscillate, and that one is considering a supertube of

constant total electric charges, the only modifications brought about by the wiggles show

up in the expression of J .

Hence, the functional bubble equations for backgrounds containing a wiggly super-

tube in multi-center GH solutions are exactly the same as those for a round supertube,

except that one replaces the angular momentum J of the round supertube with the an-

gular momentum of the wiggly one, which is obtained from the density modes via equa-

tions (5.19), (5.22) and (5.21).
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6 The entropy enhancement mechanism

Having constructed the full solution corresponding to a wiggly back-reacted supertube

in an ambipolar space, we now turn to the exploration of the amount of entropy such a

supertube can store. In the regime of parameters where one can ignore the back-reaction

of supertubes, this question was studied using the Born-Infeld action [25], and it was found

that the entropy a supertube can store depends on its location in the solution, and is much

much larger than that of a supertube in flat space. In fact the entropy yielded by the Born-

Infeld action diverges as the supertube approaches the hypersurface between the regions

of opposite signature in the ambipolar GH base. It is therefore crucial to understand what

are the limits of entropy enhancement, what cuts it off in the fully back-reacted solution,

and what is the dependence on the total charges of the entropy that a supertube can store.

6.1 A near-critical supertube

The maximum entropy enhancement of a supertube potentially occurs when the supertube

approaches the critical surface, V = 0, or r+ = r−. In this limit, |F̂ | (given by (4.8))

is large. For generic values of the charges (such that
∑2

A=1 kAQ̂A 6= 0), equation (4.23)

implies that the supertube angular momentum Ĵ becomes large in this limit, of order |F̂ |.
Moreover, the large |F̂ | limit of (4.25) gives

Ĵ = − 2πq k1

k̂ k2

∫ 4πq

0
ρ1(ψ)2 dψ . (6.1)

Hence, in r+ → r− limit both Ĵ and the density fluctuation,
∫ 4πq
0 ρ1(ψ)2 dψ, grow propor-

tionally to |F̂ |. In this limit, equation (4.24) becomes

ρ2(ψ) = −k1

k2
ρ1(ψ) +

4πq2 k1

k̂ k2
2

ρ2
1(ψ)

F̂
; (6.2)

note that the term proportional to
ρ2
1
(ψ)
bF

remains finite in the limit, and hence it cannot be

discarded.

We would like to argue that (6.1) means that Ĵ must be negative, and since we have

taken the kI to be positive, this means that we need to argue that k̂ is necessarily positive.

The simplest way to see this is to consider the scale factor of the Kaluza-Klein circle in the

D1-D5-P duality frame:

W ≡ Z3√
Z1Z2

=
K1K2 + L3V√

(K2K3 + L1V )(K1K3 + L2V )
. (6.3)

On the critical surface, one has

W =

√
K1K2

|K3|
=
√
k1k2

∣∣∣∣k3 +
k̂ r±
2∆

∣∣∣∣
−1

. (6.4)

If k̂ and k3 have opposite signs then there is a danger that the equation r±
∆ = −2k3

k̂
will

admit a solution and when this happens the warp factorW diverges and the metric becomes

singular. We will therefore require that all the kI and k̂ are positive.
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This means that, in the near critical limit, Ĵ is necessarily negative and proportional to

the mean-square of the fluctuation density. If the supertube has large density fluctuations

then Ĵ is necessarily large and negative.

6.2 A simple example

We now illustrate the results above by computing a very simple example. Take ρ1 to be

given by:

ρ1(ψ) =
Q̂1

4πq

(
1 + α cosψ

)
, (6.5)

that is, we only take the first Fourier mode. The other densities, ρ2 and ρ, are then fixed

by regularity as in (4.16) and (4.17). One can integrate (4.24) to get

Q̂2 = − k̂k1

q
F̂ +

k̂2k1k2

q2

[(
Q̂1 +

k̂k2

q
F̂

)2

− α2 Q̂2
1

]− 1

2 (
F̂ 2 − 1

)
, (6.6)

which may be rewritten

[
Q̂2 +

k̂k1

q
F̂
] [(

Q̂1 +
k̂k2

q
F̂

)2

− α2 Q̂2
1

] 1

2

=
k̂2k1k2

q2
(
F̂ 2 − 1

)
. (6.7)

One can then get Ĵ from (4.22)

Ĵ = − k̂k1k2

2q2
− 1

2q

( 2∑

A=1

kAQ̂A

)
F̂ . (6.8)

For fixed Q̂A, (6.7) means that F̂ , and hence, r′+/r
′
− must be readjusted as the ampli-

tude of the oscillation grows. For the sake of definiteness, assume that the Q̂A as well as the

kj and q, k̂ are all positive. In order to have a large entropy, we need to get a large, negative

angular momentum. This is done by taking r+ − r− → 0− so that F̂ is very large and

positive. In this limit, one can see that α2 has to scale like F̂ in order to satisfy (6.6). One

can thus assume in this limit, without loss of generality, that 1 << α << F̂ . Combining

then (6.7) and (6.8) one finds:

Ĵ =
Q̂1 Q̂2

2k̂
− α2 Q̂

2
1

4k̂

[
Q̂1 +

k̂k2

q
F̂
]−1 [

Q̂2 +
k̂k1

q
F̂
]

+ O
(α4

F̂ 2

)

=
Q̂1 Q̂2

2k̂
− α2

[
k1

4k̂k2

Q̂2
1 + O

(α2

F̂ 2

)]
. (6.9)

Thus taking Ĵ very large and negative corresponds to extremely large fluctuations, α,

and these can be sustained by taking the supertube extremely close to the critical surface

(α2 ∼ F̂ ).
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6.3 Large-distance behaviour and an angular momentum bound

If there is a large angular momentum then there is necessarily a limit on this given by the

requirement that there are no CTC’s at infinity. Since the supertube wraps the ψ circles,

we would expect the primarily limitation would come from this direction, and for fixed t

the metric coefficient of (dψ +A)2 is:

Y ≡ − (Z1Z2Z3)
−2/3 µ2 + (Z1Z2Z3)

1/3 V −1 , (6.10)

and this must be non-negative everywhere.

At infinity (r → ∞) one has:

Y ∼ − m0

(k1k2(k3 + 1
2 k̂))

1/3
r , (6.11)

from which it follows that m0 must be negative. It then follows from the bubble equa-

tions (4.21) that

k1k2k3

q2

(r′+
a

+
r′−
a

)
+

k̂k1k2

2q2
+ Ĵ = − 1

2
m0(r

′
+ + r′−) ≥ 0 . (6.12)

This places a bound on how negative Ĵ can be. Indeed, if the supertube approaches

the critical surface, then Ĵ , and hence the mean-square fluctuations, are limited, not by

the intrinsic charges of the supertube, but by the product, k1k2k2, and thus by the total

charge of the corresponding black hole or black ring.

One can also use (4.23) to write (6.12) as a bound on how close the supertube can

come to the critical surface:

( 2∑

A=1

kAQ̂A

) a

(r′− − r′+)
≤ 2 k1k2k3

q
. (6.13)

Note that for the supertube to come extremely close to the critical surface the fluctuations

must be large so that Ĵ is large and negative, and so (4.23) means that F̂ should be large

and positive, where one should remember that to arrive at this we have assumed that

r′− − r′+ > 0. It is important to stress that the DBI analysis, that only captures the local

properties of the back-reacted solution, cannot encode large distances behavior, and hence

the bound on J . The knowledge of the fully back-reacted solution was therefore crucial to

obtain this bound.

6.4 How to get most entropy from a supertube

Recall that the entropy of the supertube is given by

S ∼
√
Q̂1 Q̂2 − 2 k̂Ĵ . (6.14)

In flat space k̂Ĵ is positive and proportional to the radius of the supertube and thus the

angular momentum is bounded according to |Ĵ | ≤ | 1
2k̂
Q̂1Q̂2|, where the Q̂A are the intrinsic

charges of the supertube. On the other hand, it was shown in [19, 25], using a brane-probe
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approximation, that in deep scaling solutions, the dipole-dipole interactions could allow

k̂Ĵ to become arbitrarily negative and therefore a supertube could store a vast amount of

entropy, far beyond its flat-space limit. This is the entropy enhancement mechanism.

We have now seen precisely the same process in the fully back-reacted solution, and

how fluctuations in the deep-scaling limit of an AdS throat can indeed lead to very large

negative values of k̂Ĵ through dipole-dipole interactions as the supertube approaches the

critical (V = 0) surface. The advantage of the back-reacted solution is that we can also see

that there is a bound, (6.12), on just how negative Ĵ can become. If F̂ is large, one has

r′+ ≈ r′− and the supertube electric charges become irrelevant. Thus the bound becomes:

− Ĵ ≤ k1k2

2 q2
(4 γ k3 + k̂) . (6.15)

where γ ≡ r′
±

a defines the aspect-ratio of the triangle defined by the supertube and the GH

points. If the flux parameters, kj , are very large, then one has the following bound on the

entropy enhancement:

S ∼
√
Q̂1 Q̂2 − 2 k̂Ĵ ≤

√

Q̂1 Q̂2 +
k̂k1k2

q2
(4 γ k3 + k̂) ∼

√
k̂k1k2

q2
(4 γ k3 + k̂) .

(6.16)

Thus the entropy enhancement can be extremely large but is still limited. In particular, the

limit involves precisely the dipole-dipole interaction between the supertube and the back-

ground geometry. In flat space the supertube entropy is limited by its intrinsic charges,

whereas here it is limited by the charges of the complete background. We have thus demon-

strated that entropy enhancement is a very real, and potentially very large phenomenon

but that it is bounded.

For one supertube, one can use the fact that the M2 charges of our solution are

proportional to the product of the magnetic fluxes on the cycle between two GH centers to

estimate the dependence of the entropy on the total charges. Assuming that the supertube

dipole charge k̂ is of the same order as the ki, this gives S ∼
√
k4 ∼

√
Q2. This entropy has

the same growth with charges as that of a normal supertube in flat space; the difference is

that it is not realized by putting all the charges on a supertube, but rather by using the

charges to create a two-centered bubbled solution, and putting a very small supertube in

this background.

Hence, the entropy of a single supertube in a bubbled background, though very en-

hanced, does not give a parametrically-larger entropy than that of a two-charge system.

To get more entropy, we have to find a way to put a larger amount of negative angular

momentum on this supertube, without destroying the asymptotics of the solution. It is

not hard to see that the angular momentum bound (6.15) is much like that of a BMPV

black hole: the M2 charges of the background are proportional to the product of the fluxes:

Q1 ∼ k2k3, and the bound of the absolute value of Ĵ is

|Ĵ | ≤
√
Q1Q2Q3 , (6.17)

exactly like the BMPV black hole. However, it is well-known that for a given set of charges,

the BMPV black hole is not the object with the largest angular momentum. A black ring,
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or a supertube can carry a parametrically-larger angular momentum, proportional to the

square of the charges [18, 45].

Thus, a possible way to obtain more entropy than
√
Q2 is to place more than one

supertube in the two-center bubbling solution. Indeed one could use a large non-wiggly

supertube to act as an angular momentum sink and another smaller one that will give

the entropy via the entropy enhancement mechanism. The two supertubes could be given

dipole charges that are oriented in the same direction so that there is no danger of W

(equations (6.3) and (6.4)) vanishing. However, the angular momentum of the non-wiggly

supertube will point in the opposite direction from that of the entropy-enhanced supertube.

Assuming that the dipole charge of the wiggly supertube is again of order Q1/2, its angular

momentum is now of order Q2, and hence the total entropy of the system is

S ∼
√
k̂|Ĵ | ∼

√
Q5/2 (6.18)

while this entropy is still not black-hole-like, it is parametrically larger than that of the

two-charge system. Of course to establish that this kind of entropy is indeed present in

our system, one would need to construct the fully-back-reacted solution with a wiggly and

a non-wiggly supertube in global AdS3 ×S2 and to check that this metric is free of CTC’s.

Another possible way to obtain a larger entropy is to place many wiggly supertubes

in this background. In general, the dipole charges of these supertubes should have the

same orientation as the k3 of the background, in order to avoid zeros in the scale factor W

in equation (6.4). Hence, when they spin, their angular momenta will be oriented along

the same direction, and will sum to the total allowable value of |Ĵ | (which is of the order

Q3/2). The total entropy will contain, besides the entropy of each individual supertube,

a component coming from the many ways of partitioning Ĵ between various supertubes,

and will also be generically larger than
√
Q2. Of course, by adding a large non-wiggly

supertube that acts like an angular momentum sink we can increase the upper limit of |Ĵ |,
and presumably obtain an entropy larger than even (6.18).

Probably the best way to bypass the angular momentum bound and obtain a large

entropy is to put two counter-rotating wiggly supertubes, which naively could have huge

opposite angular momenta, and could give us as much entropy as we want. However, there

is no “free lunch:” the dipole moments of the two supertubes now have to be opposite,

and for most of the possible locations of the supertubes, this will cause problems for the

scale factor W in equation (6.4). However, it may be possible to select relative locations

for the two supertubes in the vicinity of the critical surface such that W will never have

a zero. If such a configuration exists, and satisfies the bubble equations, one can imagine

starting to wiggle the supertubes, in order to get more and more states. As one does this,

the bubble equations determining the relative positions of the points change, and one can

imagine that at a certain upper value of the angular momenta these positions will become

incompatible with an everywhere-positive W . It would be certainly interesting to explore

this configuration in detail, and to see how much entropy can two oppositely-spinning

supertubes store, and how does this entropy compare to that of a black hole with the same

charges.
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7 Conclusions

We have constructed an infinite-parameter family of smooth supergravity solutions that

have three charges and three dipole charges, and that are microstates of black holes of

classically-large horizon area. These solutions are obtained by placing a two-charge su-

pertube of arbitrary shape in a two-center Gibbons-Hawking base space. In general the

solutions for such supertubes can be implicitly written using scalar and vector Green func-

tions, but so far no explicit solution has been written down, owing to the complicated form

of the Green functions, and to the fact that for most of the base spaces that are physically

of interest, the ambipolar GH spaces, the Green functions were unknown.

In general, the oscillations of a supertube in the four-dimensional base space of the

solution can be parameterized by four continuous functions but we have identified a subclass

of supertube oscillations where the shape of the supertube remains round, and only the

distribution of electric charges inside the supertube world-volume changes. The solutions

corresponding to these supertubes depend on one arbitrary continuous function, and their

magnetic dipole fields are exactly the same as those of round supertubes, which considerably

simplifies their explicit construction. The main ingredient that enters in the construction

of the explicit solution is the scalar Green function on the base space. Given that the

ambipolar GH base spaces have regions of signature −4 and +4, with intervening “critical

surfaces,” the scalar Green functions is much more complicated than it is for regular GH

spaces. We could only find its explicit form for the two-center ambipolar Gibbons-Hawking

space given by the harmonic function 1
|~r+~a| − 1

|~r−~a| . This was done via a highly non-

trivial procedure that involved reducing the five-dimensional Green function on the smooth

Lorentzian space-time that can be constructed from this base, that is, from the Green

function on global AdS3 × S2.

In constructing this family of smooth horizonless black-hole microstate geometries, we

have also found that the bubble (or integrability) equations that determine the relative

locations of the Gibbons-Hawking centers and of the supertube are unchanged for the GH

centers but become non-trivial functional bubble equations on the supertube. Remarkably,

the same functional bubble equations can be recovered by examining the Born-Infeld ac-

tion of a probe supertube in this space. Given the completely different nature of the two

calculations that yield the same functional bubble equations, and given that one calcula-

tion is done in the regime of parameters where the supertube does not back-react on the

geometry, while the other was done in the regime where it does, this result has several

important implications. First, it points to the existence of a non-renormalization theo-

rem that protects the functional bubble equations as one moves in moduli space. Such

a non-renormalization theorem exists for the four-dimensional multi-center solutions that

come from a five-dimensional solution with a tri-holomorphic U(1) invariance (and hence a

Gibbons-Hawking base space), and our analysis finds that this non-renormalization extends

to solutions that do not have this invariance.

One of the most important uses of the non-renormalization theorem for these U(1)-

invariant solutions has been the quantization and counting of certain finite-dimensional

moduli spaces of multi-center configurations [11, 14]. This is done at weak coupling, and
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then extrapolated to the regime of parameters where all the branes back-react using this

non-renormalization theorem. The fact that the infinite-dimensional moduli space of wiggly

supertubes does not receive quantum corrections implies that if one quantizes this moduli

space at weak coupling (using for example the Born-Infeld action of supertubes) one can

find how much entropy comes from fully-back-reacted wiggly supergravity solutions.

Another important result of the agreement between the DBI analysis and the fully

back-reacted descriptions of the bubbling solutions containing supertubes is that one can

streamline the construction and analysis of supertube configurations that give smooth mi-

crostates without constructing the full supergravity solution for each and every microstate.

Indeed, as shown in section 4 and in [19], the local condition that the supergravity solution

near the supertube be smooth and free of closed timelike curves is exactly the same as the

condition that the supertube be a solution to the DBI action. In addition, we have also seen

in this paper that the conditions that the solution be free of closed timelike curves near the

GH centers, that is, all the other bubble equations, can also be obtained from the functional

bubble equations for the supertube. Hence, if one wants to find the properties of a solution

containing a supertube that has a charge density given by an arbitrary function ρ1(θ), one

first determines the density distribution for the other charge ρ2(θ), using equation (4.16),

then finds the total supertube angular momentum density J(θ) using equation (4.17). The

next step is to integrate these densities to find the total charge and angular momentum,

and to use the bubble equations to determine the location of this supertube and of the

other Gibbons-Hawking centers in the full solution. Our analysis finds that as far as the

full supergravity solution is concerned, the smooth supertube with variable charge and an-

gular momentum density behaves exactly as a singular U(1)-invariant supertube that has

the same total charges and angular momentum. Hence, to analyze whether a given wig-

gly supertube gives a smooth and regular geometry upon back-reacting one simply has to

construct the fully back-reacted solution of an equivalent round supertube, which respects

the tri-holomorphic U(1) invariance of the GH base, and which is straightforward to write

down in terms of harmonic functions.

Last, but not least, our analysis finds that the entropy enhancement mechanism, first

uncovered in [25] for non-back-reacted supertubes, extends to fully back-reacted solutions.

This mechanism allows supertubes with relatively small electric charges to have a much

larger entropy in a background with large magnetic fields than in flat space. We showed

in section 6 that the entropy of such a supertube is bounded above not by its own elec-

tric charges, but by the electric charges of the background in which it is placed. This

establishes that the entropy enhancement mechanism is not an artifact of the Born-Infeld

approximation to the supertube dynamics, but is a feature of fully-back-reacted solutions

containing supertubes.

Clearly, the most important open problem raised by our work is to determine how

much entropy can be found in the class of solutions that we have constructed. In contrast

to all three-charge solutions that have been obtained so far, whose moduli space is finite-

dimensional, the solutions we construct have a much larger moduli space, whose dimension

is infinite. Hence they should have a much larger entropy than that found by the semi-

classical quantization of the highly symmetric bubbled solutions in [11, 14]. The question
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is how much more can be gained through the density fluctuations and through entropy

enhancement. Indeed, the entropy of U(1)-invariant (and toroidally invariant) microstates

solutions is parametrically smaller than that of the corresponding black holes, as one might

have in hind-sight expected from counting only microstates that respect a certain isome-

try. It is also clear that the solutions we construct are not the most general black hole

microstates one can finds in supergravity. All of our solutions are independent of the in-

ternal space (which one can take to be T 6 or a more general Calabi-Yau), and utilize only

one of the four functions worth of oscillations that a supertube can have in spacetime6.

Nevertheless, from the Born-Infeld action of supertubes we know that their moduli space

is characterized by continuous functions, and the isometry we break does not destroy the

nature of the moduli space and the nature of the counting problem, it just uses one of the

eight bosonic degrees of freedom in the DBI action. Consequently, we expect the entropy of

the solutions we construct to differ from the entropy of the supergravity solutions coming

from all the possible supertube oscillations by a numerical factor of
√

8 (or
√

12 if one

considers the fermion partners of the bosonic oscillations). Hence, counting the solutions

we have constructed, while not capturing all the entropy of supergravity solutions, will give

a finite and known fraction of the complete set of solutions. In contrast, the extra U(1)

isometry of the solutions counted in [11, 14] destroys the function-dependent nature of the

moduli space and makes it finite-dimensional, hence such solutions cannot be expected to

have an entropy that grows with the charges in the same way as that of the most general

smooth supergravity solution.

On the more technical side, one drawback of our work is that we have not been able

to obtain the expression of the four-dimensional rotation parameter ~ω in closed form. The

only danger associated with ~ω is that it could lead to the appearance of closed timelike

curves, either via Dirac-Misner strings, or more globally. The absence of the former is

guaranteed by the functional bubble equations. Furthermore, as we have argued above,

all the global properties of a solution with smooth wiggly supertube can be captured by

a Gibbons-Hawking solution that contains an equivalent round supertube. If the ~ω of the

latter solution does not cause closed timelike curves far-away from the supertube location,

it is likely that the ~ω of the wiggly solution will not cause problems either. This being said,

it would still be quite interesting to try to obtain ~ω in closed form, at least for some of the

solutions, and see that indeed the regularity of the solutions is insured by the functional

bubble equation and by the regularity of the solution with an equivalent round supertube.

Finding ~ω explicitly would also probably be essential to the complete analysis of a solution

with multiple counter-rotating, wiggling supertubes. We are currently trying to develop a

class of solutions that contain such supertubes.

The work presented here has demonstrated the reality and viability of the entropy

enhancement mechanism and thus represents significant progress in finding microstate ge-

ometries. In subsequent work we hope to be able to construct solutions with multiple wig-

gling supertubes and show how they can interact with one another and generate mutual

entropy enhancement while keeping the total angular momentum small. The interactions

6For two-charge solutions that utilize the internal and fermionic degrees of freedom see [17, 46, 47].
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and closed-timelike-curve analysis will limit the enhancement but we remain hopeful that

it will get us near the long-sought, semi-classical black-hole entropy.
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A Details of the Green function

In the main body of the paper we only considered the details of the Green function, (3.50),

that were directly pertinent to finding the wiggling supertube solution. In this appendix

we will examine the Green function in more detail and show that it does indeed have the

requisite properties.

A.1 Branch cuts and singularities

We begin by considering the possible singularities of Ĝ and while the physical domain has

|z| = 1, we will consider |z| ≤ 1 for the same reasons that were outlined in section 3.6. We

will show that the only singularity is precisely the physical one exhibited in section 3.7.1.

From (3.45) it follows that
√
a2 + ib2 vanishes only if |u−vz|2 = |yz|2 while from (3.44)

one has |u − vz| ≥ 1, |yz| ≤ 1 with equality if and only if z = 1, ξ = ξ′, θ = θ′ = π/2.

Using this one then sees that a2 = b2 = 0 if and only if ξ = ξ′, ψ = ψ′, φ = φ′ and

θ = θ′ = π/2: In other words both points coincide with each other and lie on the critical

(V = 0) surface. Thus the only potential singularity generated by
√
a2 + ib2 occurs only

for a particular class of coincident points and this singularity was analyzed in 3.7.1, and we

will also discuss some further details below. More generally, from the fact that |u−vz| ≥ 1,

|yz| ≤ 1 it is not hard to convince oneself that a2 is everywhere non-negative and so there

is a globally analytic, single determination of the square root, which means that there are

no branch points and branch cuts in the region of interest.

Now consider the singularities associated with the vanishing of the function, Λ. From

the last expression in (3.59) we see that there are possible singularities in z
Λ when either

a) ∆ = 0, b) U = T = 0 or c) θ = π − θ′. Note that while |U | → ∞ is certainly

possible if r± + r′± = ∆, the last expression in (3.59) shows that z
Λ remains finite. The

other expression in (3.59), along with (3.57), shows that there is, in fact no singularity

associated with ∆ vanishing by itself. Similarly, the same expression, combined with the

form of m in (3.46), shows that there is no singularity associated with θ = π − θ′ alone.

Thus the only singularity in (3.59) occurs when U = T = 0, indeed there is a double pole

if one sets T = 0 first and then takes U → 0. We will now show that this double pole is
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generically cancelled by the other terms in the complete Green function and that the only

singularity arises when the points are coincident.

Setting T = 0 in the Green function is equivalent to taking z = m̄
|m| . In terms of the

earlier notation, this means that:

z

Λ
=

z+

m
(
z+ − m̄

|m|
)2 , (A.1)

where we have used the fact that z+z− = m̄
m . The possible double pole thus emerges in

the limit z± → m̄
|m| . Note the order of limits here: The value of z is fixed first and then

the limit of z± is taken. Also note that the choice z = m̄
|m| has |z| = 1 and is thus in

the physical domain. This means there is the possibility of strongly singular behavior at

non-coincident points in G and we will now show that such singularities do not occur.

We begin by assuming ∆ 6= 0 and hence P 6= 0, then the limit of interest can only

happen if
√

(1 + x)2 − y2 = (cos θ + cos θ′) = 0. Thus the potential singularity can only

occur on an “image surface” at the “conjugate latitudes,” θ = π − θ′, on the S2.

Let θ = π − θ′ − ε and so
√

(1 + x)2 − y2 ∼ O(ε). One can also easily verify that

z =
m̄

|m| =
u+ v e−iχ

u e−iχ + v
+ O(ε2) , z± =

m̄

|m| ± ε

2m
sin θ

√
P + O(ε2) , (A.2)

and therefore (z+ − m̄
|m|)

2 ∼ O(ε2). On the other hand, for physical parameter values

(|z| = 1) and non-coincident points, one has a2 + ib2 6= 0 but one also has

ν = − (1+x)
(
(u+v e−iχ)−z (u e−iχ+v)

)
+ ((1+x)−y)(v−uz)e−iχ ∼ O(ε2) , (A.3)

where we have used (A.2) and ((1 + x) − y) = cos2 1
2(θ + θ′) ∼ O(ε2). It follows that ν

vanishes strongly enough to cancel the potential singularity as ε → 0 and that the Green

function (3.50) is, in fact, finite as ε→ 0.

Now suppose ∆ = 0, then ξ = ξ′, θ = θ′ and φ = φ′, then m = r+r−
a2 and z± = 1. One

then finds that:
z

Λ
=

z

m(z − 1)2
, (A.4)

which indeed has a double pole as z = e
i
2q

(ψ−ψ′) → 1. This is, of course, the correct double

pole for the Green function as ψ → ψ′ with ξ = ξ′, θ = θ′ and φ = φ′.

A.2 The scalar fields sourced by simple sources

In this appendix we compute the moments of the Green function by integrating it against

the Fourier modes of a given electrical charge distribution. By putting together these

moments one can reconstruct the full warp factor sourced by supertubes with variable

charge distributions in the two-center ambipolar space discussed in this paper.

Fourier modes along the fiber

Taking q = 1 for the present, we compute the moments of the propagators, that is, the

integrals:

Im =

∫ 4π

0
dψ e

i m
2

(ψ−ψ′) Ĝ =
2

i

∮
dz

z
zm Ĝ . (A.5)
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where the z-integral is over a circle of radius 1. We write the propagator as

Ĝ =
z

2 aΛ
[φ(z;χ) + φ(z−1;−χ)] , φ(z;χ) ≡ ν√

a2 + ib2
. (A.6)

We assume m ≥ 0. The integrals with m < 0 can be derived from the reality condition

I−m = I∗m . (A.7)

The function φ(z) is regular for |z| < 1 but has a branch cut in the region |z| > 1. Then, to

compute the part of the integral containing φ(z−1) it is convenient to change the coordinate

z → z−1.

Im =
1

i

∮
dz

aΛ
zm φ(z;χ) +

1

i

∮
dz

a Λ̃
z−m φ(z;−χ) (A.8)

where

Λ̃ = z2Λ(z−1) = m̄(z − z−1
+ )(z − z−1

− ) . (A.9)

The first integral in (A.8) receives contributions only from the pole of Λ inside |z| < 1,

which is z− if U > 0 and z+ if U > 0:

1

i

∮
dz

aΛ
zm φ(z;χ) = 2π

cos θ + cos θ′

am(z+ − z−)
zm∓ , if U ≷ 0 . (A.10)

Using the identities derived above, one can re-write this integral in terms of U and T :

cos θ + cos θ′

am(z+ − z−)
=

1

∆
, z∓ = e∓Ue−iT̂ , (A.11)

with

eiT̂ = eiT z−1 , (A.12)

and thus
1

i

∮
dz

aΛ
zm φ(z;χ) =

2π

∆
e∓mUe−imT̂ , if U ≷ 0 . (A.13)

The second integral in (A.8) receives contributions both from the pole of Λ̃ (which is at

z = z−1
+ for U > 0 and at z = z−1

− for U > 0) and from the pole of z−m at z = 0. The

residue at z = z−1
± is given by, for U > 0

2πi
1

a m̄(z−1
+ − z−1

− )
φ(z−1

+ ;−χ) zm+ = 2πi
1

am(z− − z+)
(−φ(z+);χ) zm+

= 2πi
cos θ + cos θ′

am(z+ − z−)
zm+ = 2πi

1

∆
emUe−imT̂ , (A.14)

where we have used that

φ(z−1
+ ;−χ) = −φ(z+;χ) . (A.15)

Analogously one finds the residue for U < 0:

2πi
cos θ + cos θ′

am(z+ − z−)
zm− = 2πi

1

∆
e−mUe−imT̂ . (A.16)
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The residue at z = 0 is given by

Rm ≡ 1

(m− 1)!

dm−1

dzm−1

[φ(z;−χ)

a Λ̃

]
z=0

. (A.17)

Note that

R∗
m =

1

(m− 1)!

dm−1

dzm−1

[φ(z;χ)

aΛ

]
z=0

. (A.18)

We couldn’t find a compact expression for Rm, nor re-write it in terms of U and T .

Putting things together, we find

1

4π
Im =

1

∆
cosh(mU) e−imT̂ +

Rm
2
. (A.19)

Note that, contrary to the Page propagator, there is no cusp at U = 0.

Some limits

Let us first look at the limit in which r′+ → 0. This is achieved by taking ξ′ = ǫ/2 and

θ′ = ǫ, and letting ǫ→ 0, so that r′+ ≈ a ǫ2. At r′+ = 0 the ψ′ fiber degenerates: functions

of ψ′ are not regular unless they appear in the combination
√
r′+e

±ψ′/2 ∼ ǫ e±ψ
′/2. Thus

regularity requires that in this limit Im vanishes as

Im ∼ ǫ|m| . (A.20)

One can see that the two addends in (A.19) separately diverge as

1

∆
cosh(mU) e−imT̂ ∼ ǫ−|m| ,

Rm
2

∼ ǫ−|m| . (A.21)

However one can check with Mathematica (we could do this only up to m = 2) that the

divergences cancel and that Im indeed vanishes as ǫ|m|.
Suppose that one of the points, say x′, is on the V = 0 surface: this happens if r′+ = r′−

or θ′ = π
2 . One then finds that Im goes to a finite value.

Finally, consider the locus U = 0, or r+ − r− = −(r′+ − r′−). This implies θ′ = π − θ.

Even in this limit one can check that Im is regular (and has no cusp).
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