194 research outputs found

    High angular resolution observation of the Sunyaev-Zel'dovich effect in the massive z=0.83 cluster ClJ0152-1357

    Full text link
    X-ray observations of galaxy clusters at high redshift (z>0.5) indicate that they are more morphologically complex and less virialized than those at low-redshift. We present the first subarcmin resolution at 18 GHz observations of the Sunyaev-Zel'dovich (SZ) effect for ClJ0152-1357 using the Australia Telescope Compact Array. ClJ0152-1357 is a massive cluster at redshift z=0.83 and has a complex structure including several merging subclumps which have been studied at optical, X-ray, and radio wavelengths. Our high-resolution observations indicate a clear displacement of the maximum SZ effect from the peak of X-ray emission for the most massive sub-clump. This result shows that the cluster gas within the cluster substructures is not virialised in ClJ0152-1357 and we suggest that it is still recovering from a recent merger event. A similar offset of the SZ effect has been recently seen in the `bullet cluster' by Malu et al. This non-equilibrium situation implies that high resolution observations are necessary to investigate galaxy cluster evolution, and to extract cosmological constraints from a comparison of the SZ effect and X-ray signals.Comment: 5 pages, 4 figures, submitted to ApJ

    A polarization survey of bright extragalactic AT20G sources

    Get PDF
    We present polarization data for 180 extragalactic sources extracted from the Australia Telescope 20 GHz (AT20G) survey catalogue and observed with the Australia Telescope Compact Array during a dedicated, high sensitivity run (σP ∼ 1 mJy). For the sake of completeness, we extracted the polarization information for seven extended sources from the 9 yr Wilkinson Microwave Anisotropy Probe co-added maps at 23 GHz. The full sample of 187 sources constitutes a ≃99 per cent complete sample of extragalactic sources brighter than S20GHz = 500 mJy at the selection epoch with declination δ < −30°. The sample has a 91.4 per cent detection rate in polarization at ∼20 GHz (94 per cent if considering the subsample of point-like sources). We have measurements also at 4.8 and 8.6 GHz within ∼1 month of the 20 GHz observations for 172 sources to reconstruct the spectral properties of the sample in total intensity and in polarization: 143 of them have a polarization detection at all three frequencies. We find that there is no statistically significant evidence of a relationship either between the fraction of polarization and frequency or between the fraction of polarization and the total intensity flux density. This indicates that Faraday depolarization is not very important above 4.8 GHz and that the magnetic field is not substantially more ordered in the regions dominating the emission at higher frequencies (up to 20 GHz). We estimate the distribution of the polarization fraction and the polarized flux density source counts at ∼20 GHz

    Wide-Field Imaging and Polarimetry for the Biggest and Brightest in the 20GHz Southern Sky

    Full text link
    We present wide-field imaging and polarimetry at 20GHz of seven of the most extended, bright (Stot >= 0.50 Jy), high-frequency selected radio sources in the southern sky with declinations < -30 deg. Accompanying the data are brief reviews of the literature for each source, The results presented here aid in the statistical completeness of the Australia Telescope 20GHz Survey's bright source sample. The data are of crucial interest for future cosmic microwave background missions as a collection of information about candidate calibrator sources. We are able to obtain data for seven of the nine sources identified by our selection criteria. We report that Pictor A is thus far the best extragalactic calibrator candidate for the Low Frequency Instrument of the Planck European Space Agency mission due to its high level of integrated polarized flux density (0.50+/-0.06 Jy) on a scale of 10 arcmin. Six of the seven sources have a clearly detected compact radio core, with either a null or less than two percent detection of polarized emission from the nucleus. Most sources with detected jets have magnetic field alignments running in a longitudinal configuration, however PKS1333-33 exhibits transverse fields and an orthogonal change in field geometry from nucleus to jets.Comment: 17 pages, 9 figures, 2 table

    Constraining Primordial Non-Gaussianity with High-Redshift Probes

    Get PDF
    We present an analysis of the constraints on the amplitude of primordial non-Gaussianity of local type described by the dimensionless parameter fNLf_{\rm NL}. These constraints are set by the auto-correlation functions (ACFs) of two large scale structure probes, the radio sources from NRAO VLA Sky Survey (NVSS) and the quasar catalogue of Sloan Digital Sky Survey Release Six (SDSS DR6 QSOs), as well as by their cross-correlation functions (CCFs) with the cosmic microwave background (CMB) temperature map (Integrated Sachs-Wolfe effect). Several systematic effects that may affect the observational estimates of the ACFs and of the CCFs are investigated and conservatively accounted for. Our approach exploits the large-scale scale-dependence of the non-Gaussian halo bias. The derived constraints on {fNLf_{\rm NL}} coming from the NVSS CCF and from the QSO ACF and CCF are weaker than those previously obtained from the NVSS ACF, but still consistent with them. Finally, we obtain the constraints on fNL=53±25f_{\rm NL}=53\pm25 (1 σ1\,\sigma) and fNL=58±24f_{\rm NL}=58\pm24 (1 σ1\,\sigma) from NVSS data and SDSS DR6 QSO data, respectively.Comment: 16 pages, 8 figures, 1 table, Accepted for publication on JCA

    The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths

    Get PDF
    We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared background. The PSM enables the production of random realizations of the sky emission, constrained to match observational data within their uncertainties, and is implemented in a software package that is regularly updated with incoming information from observations. The model is expected to serve as a useful tool for optimizing planned microwave and sub-millimetre surveys and to test data processing and analysis pipelines. It is, in particular, used for the development and validation of data analysis pipelines within the planck collaboration. A version of the software that can be used for simulating the observations for a variety of experiments is made available on a dedicated website.Comment: 35 pages, 31 figure

    High-energy sources at low radio frequency : the Murchison Widefield Array view of Fermi blazars

    Get PDF
    This is the accepted version of the following article: Giroletti, M. et al., A&A, 588 (2016) A141, which has been published in final form at DOI: http://dx.doi.org/10.1051/0004-6361/201527817. This article may be used for non-commercial purposes in accordance with the EDP Sciences self-archiving policies.Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. We characterize the spectral properties of the blazar population at low radio frequency compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6,100 deg^2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by \fermilat. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120--180 MHz) blazar spectral index is ⟨αlow⟩=0.57±0.02\langle \alpha_\mathrm{low} \rangle=0.57\pm0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ∼\simGHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.Peer reviewedFinal Published versio

    Simultaneous Planck, Swift, and Fermi observations of X-ray and gamma-ray selected blazars

    Get PDF
    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands. Our unique data set has allowed us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi-LAT, whereas ~40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-mm spectral slope of blazars is quite flat up to ~70GHz, above which it steepens to ~-0.65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (\nupS) in the SED of FSRQs is the same in all the blazar samples with =10^13.1 Hz, while the mean inverse-Compton peak frequency, , ranges from 10^21 to 10^22 Hz. The distributions of \nupS and of \nupIC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs and strongly depend on the selection method. The Compton dominance of blazars ranges from ~0.2 to ~100, with only FSRQs reaching values >3. Its distribution is broad and depends strongly on the selection method, with gamma-ray selected blazars peaking at ~7 or more, and radio-selected blazars at values ~1, thus implying that the assumption that the blazar power is dominated by high-energy emission is a selection effect. Simple SSC models cannot explain the SEDs of most of the gamma-ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and \nupS predicted by the blazar sequence.Comment: Version accepted by A&A. Joint Planck, Swift, and Fermi collaborations pape

    Component separation methods for the Planck mission

    Get PDF
    The Planck satellite will map the full sky at nine frequencies from 30 to 857 GHz. The CMB intensity and polarization that are its prime targets are contaminated by foreground emission. The goal of this paper is to compare proposed methods for separating CMB from foregrounds based on their different spectral and spatial characteristics, and to separate the foregrounds into components of different physical origin. A component separation challenge has been organized, based on a set of realistically complex simulations of sky emission. Several methods including those based on internal template subtraction, maximum entropy method, parametric method, spatial and harmonic cross correlation methods, and independent component analysis have been tested. Different methods proved to be effective in cleaning the CMB maps from foreground contamination, in reconstructing maps of diffuse Galactic emissions, and in detecting point sources and thermal Sunyaev-Zeldovich signals. The power spectrum of the residuals is, on the largest scales, four orders of magnitude lower than that of the input Galaxy power spectrum at the foreground minimum. The CMB power spectrum was accurately recovered up to the sixth acoustic peak. The point source detection limit reaches 100 mJy, and about 2300 clusters are detected via the thermal SZ effect on two thirds of the sky. We have found that no single method performs best for all scientific objectives. We foresee that the final component separation pipeline for Planck will involve a combination of methods and iterations between processing steps targeted at different objectives such as diffuse component separation, spectral estimation and compact source extraction.Comment: Matches version accepted by A&A. A version with high resolution figures is available at http://people.sissa.it/~leach/compsepcomp.pd

    Follow-up observations at 16 and 33 GHz of extragalactic sources from WMAP 3-year data: I - Spectral properties

    Get PDF
    We present follow-up observations of 97 point sources from the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data, contained within the New Extragalactic WMAP Point Source (NEWPS) catalogue between declinations of -4 and +60 degrees; the sources form a flux-density-limited sample complete to 1.1 Jy (approximately 5 sigma) at 33 GHz. Our observations were made at 16 GHz using the Arcminute Microkelvin Imager (AMI) and at 33 GHz with the Very Small Array (VSA). 94 of the sources have reliable, simultaneous -- typically a few minutes apart -- observations with both telescopes. The spectra between 13.9 and 33.75 GHz are very different from those of bright sources at low frequency: 44 per cent have rising spectra (alpha < 0.0), where flux density is proportional to frequency^-alpha, and 93 per cent have spectra with alpha < 0.5; the median spectral index is 0.04. For the brighter sources, the agreement between VSA and WMAP 33-GHz flux densities averaged over sources is very good. However, for the fainter sources, the VSA tends to measure lower values for the flux densities than WMAP. We suggest that the main cause of this effect is Eddington bias arising from variability.Comment: 12 pages, 13 figures, submitted to MNRA

    Herschel *-ATLAS: Deep HST/WFC3 imaging of strongly lensed submillimetre galaxies

    Get PDF
    M. Negrello et al.We report on deep near-infrared observations obtained with the Wide Field Camera-3 (WFC3) onboard the Hubble Space Telescope (HST) of the first five confirmed gravitational lensing events discovered by the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We succeed in disentangling the background galaxy from the lens to gain separate photometry of the two components. The HST data allow us to significantly improve on previous constraints of the mass in stars of the lensed galaxy and to perform accurate lens modelling of these systems, as described in the accompanying paper by Dye et al. We fit the spectral energy distributions of the background sources from near-IR to millimetre wavelengths and use the magnification factors estimated by Dye et al. to derive the intrinsic properties of the lensed galaxies. We find these galaxies to have star-formations rates (SFR) ~ 400-2000 M⊙ yr-1, with ~(6-25) × 1010 M⊙ of their baryonic mass already turned into stars. At these rates of star formation, all remaining molecular gas will be exhausted in less than ~100 Myr, reaching a final mass in stars of a few 1011 M⊙. These galaxies are thus proto-ellipticals caught during their major episode of star formation, and observed at the peak epoch (z ~ 1.5-3) of the cosmic star formation history of the Universe.This work was supported by STFC (grants PP/D002400/1 and ST/G002533/1), by ASI/INAF agreement I/072/09/0, by PRININAF 2012 project ‘Looking into the dust-obscured phase of galaxy formation through cosmic zoom lenses in the Herschel Astrophysical Large Area Survey’ and, in part, by the Spanish Ministerio de Ciencia e Innovacion (project AYA2010-21766-C03-01). JGN acknowledges financial support from the Spanish CSIC for a JAE-DOC fellowship, co-funded by the European Social Fund.Peer Reviewe
    • …
    corecore