452 research outputs found

    High redshift radio galaxies

    Full text link
    There is considerable evidence that powerful radio quasars and radio galaxies are orientation-dependent manifestations of the same parent population: massive spheroids containing correspondingly massive black holes. Following the recognition of this unification, research is directed to the task of elucidating the structure and composition of the active nuclei and their hosts to understand the formation and evolution of what we expect to become the most massive of galaxies. In contrast to the quasars, where the nucleus can outshine the galaxy at optical/near infrared wavelengths by a large factor, the radio galaxies contain a 'built-in coronograph' that obscures our direct view to the nucleus. These objects present our best opportunity to study the host galaxy in detail. Of particular interest are those sources with redshifts greater than about 2 that represent an epoch when nuclear activity was much more common that it is now and when we believe these objects were in the process of assembly. In combination with high resolution imaging from space (HST), optical spectropolarimetry with Keck II allows us to clearly separate the scattered nuclear radiation from the stellar and gaseous emission from the host galaxy. The rest-frame ultraviolet emission line spectra suggest that rapid chemical evolution is occurring at this epoch. Near infrared spectroscopy with the VLT is giving us access to both the lines and continuum in the rest-frame optical spectrum, allowing investigations of the evolved stellar population and extending the composition analysis with measurements of the familiar forbidden-line spectrum.Comment: 7 pages including 2 figures. Paper no. 4005-10 in the proceedings of the SPIE International Symposium on 'Astronomical Telescopes and Instrumentation' held in Munich, Germany from 27-31 March 200

    Polarized Broad H-alpha Emission from the LINER Nucleus of NGC 1052

    Full text link
    Optical spectropolarimetry of the nucleus of the LINER NGC 1052, obtained at the Keck Observatory, reveals a rise in polarization in the wings of the H-alpha line profile. The polarization vector of H-alpha is offset by 67 degrees from the parsec-scale radio axis and by 83 degrees from the kiloparsec-scale radio axis, roughly in accord with expectations for scattering within the opening cone of an obscuring torus. The broad component of H-alpha has FWHM ~ 2100 km/s in total flux and FWHM ~ 5000 km/s in polarized light. Scattering by electrons is the mechanism most likely responsible for this broadening, and we find T_e ~ 10^5 K for the scattering medium, similar to values observed in Seyfert 2 nuclei. This is the first detection of a polarized broad emission line in a LINER, demonstrating that unified models of active galactic nuclei are applicable to at least some LINERs.Comment: 6 pages, 2 figures, prepared using the emulateapj style file, accepted for publication in The Astrophysical Journal Letter

    Studies of acquired and inherited coagulopathy using the thrombin generation assay

    Get PDF
    In order to survive, an individual’s haemostatic system has to have the capacity to respond promptly to injury and thrombus formation has to occur in a highly regulated fashion. Over the past two hundred years, our understanding of this complex system has increased dramatically. It is perhaps surprising, therefore, that clinicians rely predominantly on assays to assess coagulation that were developed over 50 years ago and that only assess the time to initial clot formation. This reflects the challenge of truly understanding the complex dynamic contributions of platelets, vascular endothelium and coagulation factors under shear force and replicating this in a test-tube. There has therefore been a drive to develop better methods of detecting disordered haemostasis that can be accurately correlated with bleeding or thrombotic risk and that can be utilised to guide treatment. The thrombin generation assay is currently a research tool that is able to chart the different phases of thrombin generation, recognising that the majority of this occurs after the end-point of traditional coagulation assays. Thrombin is key to effective haemostasis and the thrombin generation assay has been shown to correlate with a range of bleeding and thrombotic states. Although it is recognised to produce valuable information, it is hampered by the impact of pre-analytical variables, lack of standardisation and inter-operator and inter-laboratory variability. Optimisation of the assay as well as development of normal reference ranges is key. This is in addition to further phenotyping of dysfunctional haemostasis and providing evidence of clinical relevance. This thesis sets out to address these different areas with studies including the generation of normal reference ranges in addition to examining the sensitivity of the assay to anticoagulation (and its reversal) as well as exploring potential factors contributing to the variable bleeding phenotype seen in patients with severe haemophilia

    Jet-gas interactions in z~2.5 radio galaxies: evolution of the ultraviolet line and continuum emission with radio morphology

    Full text link
    We present an investigation into the nature of the jet-gas interactions in a sample of 10 radio galaxies at 2.3<z<2.9 using deep spectroscopy of the UV line and continuum emission obtained at Keck II and the Very Large Telescope. Kinematically perturbed gas, which we have shown to be within the radio structure in previous publications, is always blueshifted with respect to the kinematically quiescent gas, is usually spatially extended, and is usually detected on both sides of the nucleus. In the three objects from this sample for which we are able to measure line ratios for both the perturbed and quiescent gases, we suggest that the former has a lower ionization state than the latter. We propose that the perturbed gas is part of a jet-induced outflow, with dust obscuring the outflowing gas that lies on the far side of the object. The spatial extent of the blueshifted perturbed gas, typically ~35 kpc, implies that the dust is spatially extended at least on similar spatial scales. We also find interesting interrelationships between UV line, UV continuum and radio continuum properties of this sample.Comment: Accepted for publication in MNRA

    The centre-to-limb variations of solar Fraunhofer lines imprinted upon lunar eclipse spectra - Implications for exoplanet transit observations

    Full text link
    The atmospheres of exoplanets are commonly studied by observing the transit of the planet passing in front of its parent star. The obscuration of part of the stellar disk during a transit will reveal aspects of its surface structure resulting from general centre-to-limb variations (CLVs). These become apparent when forming the ratio between the stellar light in and out of transit. These phenomena can be seen particularly clearly during the progress of a penumbral lunar eclipse, where the Earth transits the solar disk and masks different regions of the solar disk as the eclipse progresses. When inferring the properties of the planetary atmosphere, it is essential that this effect originating at the star is properly accounted for. Using the data observed from the 2014-April-15 lunar eclipse with the ESPaDOnS spectrograph mounted on the Canada France Hawaii Telescope (CFHT), we have obtained for the first time a time sequence of the penumbral spectra. These penumbral spectra enable us to study the centre-to-limb variations of solar Fraunhofer lines when the Earth is transiting Sun. The Na i and Ca ii absorption features reported from previous lunar eclipse observations are demonstrated to be CLV features, which dominate the corresponding line profiles and mask possible planetary signal. Detecting atmospheric species in exoplanets via transit spectroscopy must account for the CLV effect.Comment: 9 pages, 11 figures, accepted, A&
    • …
    corecore