37 research outputs found

    Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores

    Get PDF
    [EN] The change in developmental fate of microspores reprogrammed toward embryogenesis is a complex but fascinating experimental system where microspores undergo dramatic changes derived from the developmental switch. After 40 years of study of the ultrastructural changes undergone by the induced microspores, many questions are still open. In this work, we analyzed the architecture of DNA-containing organelles such as plastids and mitochondria in samples of B. napus isolated microspore cultures covering the different stages before, during, and after the developmental switch. Mitochondria presented a conventional oval or sausage-like morphology for all cell types studied, similar to that found in vivo in other cell types from vegetative parts. Similarly, plastids of microspores before induction and of non-induced cells showed conventional architectures. However, approximately 40% of the plastids of embryogenic microspores presented atypical features such as curved profiles, protrusions, and internal compartments filled with cytoplasm. Three-dimensional reconstructions confirmed that these plastids actually engulf cytoplasm regions, isolating them from the rest of the cell. Acid phosphatase activity was found in them, confirming the lytic activity of these organelles. In addition, digested plastid-like structures were found excreted to the apoplast. All these phenomena seemed transient, since microspore-derived embryos (MDEs) showed conventional plastids. Together, these results strongly suggested that under special circumstances, such as those of the androgenic switch, plastids of embryogenic microspores behave as autophagic plastids (plastolysomes), engulfing cytoplasm for digestion, and then are excreted out of the cytoplasm as part of a cleaning program necessary for microspores to become embryos.We especially thank Professor L. Andrew Staehelin for his help and advice during the stay of JMSS at his lab at UC Boulder, where part of the samples used in this work was processed. We also want to express our thanks to the staff of the COMAV greenhouses and to the staff of the Electron Microscopy Service of Universitat Politecnica de Valencia for their excellent technical help. This work was supported by the following grants to JMSS: AGL2010-17895 from Spanish MICINN and ACOMP/2012/168 from Generalitat Valenciana.Parra Vega, V.; Corral Martínez, P.; Rivas-Sendra, A.; Seguí-Simarro, JM. (2015). Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores. Frontiers in Plant Science. 6(94). https://doi.org/10.3389/fpls.2015.00094S694Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., … Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. The Journal of Cell Biology, 133(6), 1251-1263. doi:10.1083/jcb.133.6.1251Clément, C., & Pacini, E. (2001). Anther plastids in angiosperms. The Botanical Review, 67(1), 54-73. doi:10.1007/bf02857849Corral-Martínez, P., Parra-Vega, V., & Seguí-Simarro, J. M. (2013). Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. Journal of Experimental Botany, 64(10), 3061-3075. doi:10.1093/jxb/ert151Datta, R., Chamusco, K. C., & Chourey, P. S. (2002). Starch Biosynthesis during Pollen Maturation Is Associated with Altered Patterns of Gene Expression in Maize. Plant Physiology, 130(4), 1645-1656. doi:10.1104/pp.006908Dunwell, J. M. (2010). Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal, 8(4), 377-424. doi:10.1111/j.1467-7652.2009.00498.xDUNWELL, J. M., & SUNDERLAND, N. (1974). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 25(2), 352-361. doi:10.1093/jxb/25.2.352DUNWELL, J. M., & SUNDERLAND, N. (1974). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 25(2), 363-373. doi:10.1093/jxb/25.2.363DUNWELL, J. M., & SUNDERLAND, N. (1975). Pollen Ultrastructure in Anther Cultures ofNicotiana tabacum. Journal of Experimental Botany, 26(2), 240-252. doi:10.1093/jxb/26.2.240Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in Plant Science, 12(8), 368-375. doi:10.1016/j.tplants.2007.06.007G�rtner, P.-J., & Nagl, W. (1980). Acid phosphatase activity in plastids (plastolysomes) of senescing embryo-suspensor cells. Planta, 149(4), 341-349. doi:10.1007/bf00571168Gilkey, J. C., & Staehelin, L. A. (1986). Advances in ultrarapid freezing for the preservation of cellular ultrastructure. Journal of Electron Microscopy Technique, 3(2), 177-210. doi:10.1002/jemt.1060030206Hause, B. (1993). Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of Brassica napus L. Cell Biology International, 17(2), 153-168. doi:10.1006/cbir.1993.1052Kremer, J. R., Mastronarde, D. N., & McIntosh, J. R. (1996). Computer Visualization of Three-Dimensional Image Data Using IMOD. Journal of Structural Biology, 116(1), 71-76. doi:10.1006/jsbi.1996.0013Li, F., & Vierstra, R. D. (2012). Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends in Plant Science, 17(9), 526-537. doi:10.1016/j.tplants.2012.05.006Rose, T. L., Bonneau, L., Der, C., Marty-Mazars, D., & Marty, F. (2006). Starvation-induced expression of autophagy-related genes in Arabidopsis. Biology of the Cell, 98(1), 53-67. doi:10.1042/bc20040516Makowska, K., & Oleszczuk, S. (2013). Albinism in barley androgenesis. Plant Cell Reports, 33(3), 385-392. doi:10.1007/s00299-013-1543-xMandaron, P., Niogret, M. E., Mache, R., & Monéger, F. (1990). In vitro protein synthesis in isolated microspores of Zea mays at several stages of development. Theoretical and Applied Genetics, 80(1), 134-138. doi:10.1007/bf00224027Maraschin, S. F., de Priester, W., Spaink, H. P., & Wang, M. (2005). Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany, 56(417), 1711-1726. doi:10.1093/jxb/eri190McDonald, K. L., & Auer, M. (2006). High-Pressure Freezing, Cellular Tomography, and Structural Cell Biology. BioTechniques, 41(2), 137-143. doi:10.2144/000112226Nagl, W. (1977). «Plastolysomes» — Plastids Involved in the Autolysis of the Embryo-Suspensor in Phaseolus. Zeitschrift für Pflanzenphysiologie, 85(1), 45-51. doi:10.1016/s0044-328x(77)80263-8Nitsch, C., & Nitsch, J. P. (1967). The induction of flowering in vitro in stem segments of Plumbago indica L. Planta, 72(4), 355-370. doi:10.1007/bf00390146Nitsch, J. P., & Nitsch, C. (1969). Haploid Plants from Pollen Grains. Science, 163(3862), 85-87. doi:10.1126/science.163.3862.85Otegui, M. S., Noh, Y.-S., Martínez, D. E., Vila Petroff, M. G., Andrew Staehelin, L., Amasino, R. M., & Guiamet, J. J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant Journal, 41(6), 831-844. doi:10.1111/j.1365-313x.2005.02346.xReyes, F. C., Chung, T., Holding, D., Jung, R., Vierstra, R., & Otegui, M. S. (2011). Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells. The Plant Cell, 23(2), 769-784. doi:10.1105/tpc.110.082156Sangwan, R. S., & Sangwan-Norreel, B. S. (1987). Ultrastructural cytology of plastids in pollen grains of certain androgenic and nonandrogenic plants. Protoplasma, 138(1), 11-22. doi:10.1007/bf01281180Satpute, G. K., Long, H., Seguí-Simarro, J. M., Risueño, M. C., & Testillano, P. S. (2005). Cell architecture during gametophytic and embryogenic microspore development in Brassica napus L. Acta Physiologiae Plantarum, 27(4), 665-674. doi:10.1007/s11738-005-0070-ySeguí-Simarro, J. M. (2010). Androgenesis Revisited. The Botanical Review, 76(3), 377-404. doi:10.1007/s12229-010-9056-6Seguí-Simarro, J. M. (2015). High-Pressure Freezing and Freeze Substitution of In Vivo and In Vitro Cultured Plant Samples. Plant Microtechniques and Protocols, 117-134. doi:10.1007/978-3-319-19944-3_7Seguí-Simarro, J. M. (2015). Three-Dimensional Imaging for Electron Microscopy of Plastic-Embedded Plant Specimens. Plant Microtechniques and Protocols, 135-151. doi:10.1007/978-3-319-19944-3_8Seguí-Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiologia Plantarum, 134(1), 1-12. doi:10.1111/j.1399-3054.2008.01113.xShariatpanahi, M. E., Bal, U., Heberle-Bors, E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519-534. doi:10.1111/j.1399-3054.2006.00675.xTelmer, C. A., Newcomb, W., & Simmonds, D. H. (1995). Cellular changes during heat shock induction and embryo development of cultured microspores ofBrassica napus cv. Topas. Protoplasma, 185(1-2), 106-112. doi:10.1007/bf01272758Testillano, P. S., Coronado, M. J., Seguı́, J. M., Domenech, J., González-Melendi, P., Raška, I., & Risueño, M. C. (2000). Defined Nuclear Changes Accompany the Reprogramming of the Microspore to Embryogenesis. Journal of Structural Biology, 129(2-3), 223-232. doi:10.1006/jsbi.2000.4249Van Doorn, W. G., Kirasak, K., Sonong, A., Srihiran, Y., van Lent, J., & Ketsa, S. (2011). Do plastids inDendrobiumcv. Lucky Duan petals function similar to autophagosomes and autolysosomes? Autophagy, 7(6), 584-597. doi:10.4161/auto.7.6.15099Zaki, M. A. M., & Dickinson, H. G. (1990). Structural changes during the first divisions of embryos resulting from anther and free microspore culture inBrassica napus. Protoplasma, 156(3), 149-162. doi:10.1007/bf01560653Zaki, M. A. M., & Dickinson, H. G. (1991). Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sexual Plant Reproduction, 4(1). doi:10.1007/bf0019457

    K0S and Λ production in Pb-Pb collisions at sNN−−−−√=2.76  TeV

    Get PDF
    The ALICE measurement of K0S and Λ production at midrapidity in Pb-Pb collisions at sNN−−−√=2.76  TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4  GeV/c (0.6  GeV/c for Λ) to 12  GeV/c. The pT dependence of the Λ/K0S ratios exhibits maxima in the vicinity of 3  GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s√=0.9  TeV and at s√=7  TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2  GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the Λ/K0S ratio

    phi-Meson production at forward rapidity in p-Pb collisions at root s(NN)=5.02 TeV and in pp collisions at root s=2.76 TeV

    Get PDF
    The first study of phi-meson production in p-Pb collisions at forward and backward rapidity, at a nucleonnucleon centre-of-mass energy root s(NN)= 5.02 TeV, has been performed with the ALICE apparatus at the LHC. The phi-mesons have been identified in the dimuon decay channel in the transverse momentum (p(T)) range 1 <p(T) <7GeV/c, both in the p-going (2.03 <y <3.53) and the Pb-going (-4.46 <y <-2.96) directions - where ystands for the rapidity in the nucleon-nucleon centre-of-mass - the integrated luminosity amounting to 5.01 +/- 0.19nb(-1) and 5.81 +/- 0.20nb(-1), respectively, for the two data samples. Differential cross sections as a function of transverse momentum and rapidity are presented. The forward-backward ratio for f-meson production is measured for 2.96Peer reviewe

    Measurement of D-s(+) product ion and nuclear modification factor in Pb-Pb collisions at root S-NN=2.76 TeV

    Get PDF
    Peer reviewe

    Measurement of transverse energy at midrapidity in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    We report the transverse energy (ET) measured with ALICE at midrapidity in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of centrality. The transverse energy was measured using identified single-particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean ET per unit pseudorapidity (eta), , in 0%-5% central collisions is 1737 +/- 6(stat.) +/- 97(sys.) GeV. We find a similar centrality dependence of the shape of as a function of the number of participating nucleons to that seen at lower energies. The growth in at the LHC energies exceeds extrapolations of low-energy data. We observe a nearly linear scaling of with the number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate that the energy density in 0%-5% central Pb-Pb collisions at root s(NN) = 2.76 TeV is 12.3 +/- 1.0 GeV/fm(3) and that the energy density at the most central 80 fm(2) of the collision is at least 21.5 +/- 1.7 GeV/fm(3). This is roughly 2.3 times that observed in 0%-5% central Au-Au collisions at root s(NN) = 200 GeV.Peer reviewe

    Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at root s(NN)=2.76 TeV

    Get PDF
    We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of root(NN)-N-s = 2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2 <k(T) <0.7 GeV/c. We find that the R-side and R-out radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via R-side oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive-indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3 + 1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum R-side oscillations, but systematically underestimate the oscillation magnitude.Peer reviewe

    D-meson production in p-Pb collisions at root S-NN=5.02 TeV and in pp collisions at root S=7 TeV

    Get PDF
    Peer reviewe

    Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at root S-NN=2.76 TeV

    Get PDF
    Peer reviewe

    J/Psi suppression at forward rapidity in Pb-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    The inclusive J/Psi production has been studied in Pb-Pb and pp collisions at the centre-of-mass energy per nucleon pair root sNN= 5.02TeV, using the ALICE detector at the CERN LHC. The J/Psi meson is reconstructed, in the centre-of-mass rapidity interval 2.5 <y <4and in the transverse- momentum range p(T)<12GeV/c, via its decay to a muon pair. In this Letter, we present results on the inclusive J/Psi cross section in pp collisions at root s= 5.02TeV and on the nuclear modification factor R-AA. The latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum p(T) of the J/Psi. The measured R-AA values indicate a suppression of the J/Psi in nuclear collisions and are then compared to our previous results obtained in Pb-Pb collisions at root sNN= 2.76TeV. The ratio of the R-AA values at the two energies is also computed and compared to calculations of statistical and dynamical models. The numerical value of the ratio for central events (0-10% centrality) is 1.17 +/- 0.04( stat)+/- 0.20(syst). In central events, as a function of p(T), a slight increase of R-AA with collision energy is visible in the region 2 <p(T)<6GeV/c. Theoretical calculations qualitatively describe the measurements, within uncertainties. (C) 2017 The Author. Published by Elsevier B.V.Peer reviewe

    Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    Peer reviewe
    corecore