686 research outputs found

    Structure and superconductivity of two different phases of Re3W

    Get PDF
    Two superconducting phases of Re(3)W have been found with different physical properties. One phase crystallizes in a noncentrosymmetric cubic (alpha-Mn) structure and has a superconducting transition temperature T(c) of 7.8 K. The other phase has a hexagonal centrosymmetric structure and is superconducting with a T(c) of 9.4 K. Switching between the two phases is possible by annealing the sample or remelting it. The properties of both phases of Re(3)W have been characterized by powder neutron diffraction, magnetization, and resistivity measurements. The temperature dependences of the lower and upper critical fields have been measured for both phases. These are used to determine the penetration depths and the coherence lengths for these systems

    JWST Near-Infrared Detectors: Latest Test Results

    Get PDF
    The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection

    Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    Get PDF
    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    James Webb Space Telescope Near-Infrared Spectrograph: Dark Performance of the First Flight Candidate Detector Arrays

    Get PDF
    The James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 micron) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. This article focuses on the measured performance of the first flight-candidate, and near-flight candidate, detector arrays. These are the first flight-packaged detector arrays that meet NIRSpec's challenging 6 e(-) rms total noise requirement
    corecore